10,417 research outputs found
A Method to Determine the In-Air Spatial Spread of Clinical Electron Beams
We propose and analyze in detail a method to measure the in-air spatial
spread parameter of clinical electron beams. Measurements are performed at the
center of the beam and below the adjustable collimators sited in asymmetrical
configuration in order to avoid the distortions due to the presence of the
applicator. The main advantage of our procedure lies in the fact that the dose
profiles are fitted by means of a function which includes, additionally to the
Gaussian step usually considered, a background which takes care of the dose
produced by different mechanisms that the Gaussian model does not account for.
As a result, the spatial spread is obtained directly from the fitting procedure
and the accuracy permits a good determination of the angular spread. The way
the analysis is done is alternative to that followed by the usual methods based
on the evaluation of the penumbra width. Besides, the spatial spread found
shows the quadratic-cubic dependence with the distance to the source predicted
by the Fermi-Eyges theory. However, the corresponding values obtained for the
scattering power are differing from those quoted by ICRU nr. 35 by a factor ~2
or larger, what requires of a more detailed investigation.Comment: 11 pages, 5 Postscript figures, to be published in Medical Physic
A combinatorial investigation of sputtered Ta-Al-C thin films
We describe a combinatorial experiment investigating the Ta–Al–C material system, conducted with the aim of determining why the tantalum-containing Mn + 1AXn phases have so far proved to be not amenable to thin-film synthesis. Samples were deposited onto (0001) Al2O3 wafers at 850 °C and characterized by X-ray diffraction wafer maps, scanning electron microscopy, and surface optical scattering. Elemental Ta, the binary phases TaC, Ta2C, and TaAl3, and the ternary phases Ta3Al2C and Ta5Al3C were identified. The morphology, phase composition and preferred orientation of the films deposited were found to be highly sensitive to the Ta fraction of the incident flux during deposition. No MAX phase material was observed, indicating that the Ta-containing MAX phases do not form under the deposition conditions investigated. Explanations associated with inadequate coverage of stochiometries, preferential sputtering, and thermodynamic instability have been ruled out. An explanation based on reduced surface diffusion of Ta during growth is proposed. A substantially higher substrate temperature during deposition is likely to be required to synthesize Ta-containing MAX phases
Discrete Lie Advection of Differential Forms
In this paper, we present a numerical technique for performing Lie advection
of arbitrary differential forms. Leveraging advances in high-resolution finite
volume methods for scalar hyperbolic conservation laws, we first discretize the
interior product (also called contraction) through integrals over Eulerian
approximations of extrusions. This, along with Cartan's homotopy formula and a
discrete exterior derivative, can then be used to derive a discrete Lie
derivative. The usefulness of this operator is demonstrated through the
numerical advection of scalar fields and 1-forms on regular grids.Comment: Accepted version; to be published in J. FoC
Dynamic evolution of the source volumes of gradual and impulsive solar flare emissions
This study compares flare source volumes inferred from impulsive hard X-rays and microwaves with those derived from density sensitive soft X-ray line ratios in the O VII spectrum. The data for this study were obtained with the SMM Hard X-Ray Burst Spectrometer, Earth-based radio observatories, and the SOLEX-B spectrometer on the P78-1 satellite. Data were available for the flares of 1980 April 8, 1980 May 9, and 1981 February 26. The hard X-ray/microwave source volume is determined under the assumption that the same electron temperature or power law index characterizes both the source of hard X-rays and the source of microwaves. The O VII line ratios yield the density and volume of the 2 X 10 to the 6th K plasma. For all three flares, the O VII source volume is found to be smallest at the beginning of the flare, near the time when the impulsive hard X-ray/microwave volume reaches its first maximum. At this time, the O VII volume is three to four orders of magnitude smaller than that inferred from the hard X-ray/microwave analysis. Subsequently, the O VII source volume increases by one or two orders of magnitude then remains almost constant until the end of the flare when it apparently increases again
Theory of magnon-polaritons in quantum Ising materials
We present a theory of magnon-polaritons in quantum Ising materials, and
develop a formalism describing the coupling between light and matter as an
Ising system is tuned through its quantum critical point. The theory is applied
to Ising materials having multilevel single-site Hamiltonians, in which
multiple magnon modes are present, such as the insulating Ising magnet
LiHoF . We find that the magnon-photon coupling strengths may be tuned by
the applied transverse field, with the coupling between the soft mode present
in the quantum Ising material and a photonic resonator mode diverging at the
quantum critical point of the material. A fixed system of spins will not
exhibit the diamagnetic response expected when light is coupled to mobile spins
or atoms. Without the diamagnetic response, one expects a divergent
magnon-photon coupling strength to lead to a superradiant quantum phase
transition. However, this neglects the effects of damping and decoherence
present in any real system. We show that damping and decoherence may block the
superradiant quantum phase transition, and lead to weak coupling between the
soft magnon mode and the resonator mode. The results of the theory are applied
to experimental data on the model system LiHoF in a microwave resonator.Comment: 22 pages, 6 figure
Apparent Violation of the Wiedemann-Franz law near a magnetic field tuned metal-antiferromagnetic quantum critical point
The temperature dependence of the interlayer electrical and thermal
resistivity in a layered metal are calculated for Fermi liquid quasiparticles
which are scattered inelastically by two-dimensional antiferromagnetic spin
fluctuations. Both resistivities have a linear temperature dependence over a
broad temperature range. Extrapolations to zero temperature made from this
linear- range give values that appear to violate the Wiedemann-Franz law.
However, below a low-temperature scale, which becomes small close to the
critical point, a recovery of this law occurs. Our results describe recent
measurements on CeCoIn near a magnetic field-induced quantum phase
transition. Hence, the experiments do not necessarily imply a non-Fermi liquid
ground state.Comment: 4 pages, 2 figures; accepted to Phys. Rev. Let
Phenology and growth response to irrigation and sowing date of Kabuli chickpea (Cicer arietinum L.) in a cool-temperate subhumid climate
The photothermal response of three Kabuli chickpea (Cicer arietinum L.) cultivars, at different growth stages, to eight irrigation treatments in 1998/99 and four irrigation treatments in 1999/2000 was studied on a Wakanui silt loam soil in Canterbury, New Zealand (43°38S, 172°30E). The rate of development from emergence to flowering (e-f) and sowing to harvest maturity were strongly and positively associated (R²=0·87, P<0·001) with mean temperature during those periods. All phenological stages considered (sowing to emergence, e-f, flowering to podding, podding to physiological maturity and physiological maturity to harvest maturity) depended upon accumulated thermal time (Tt) above a base temperature (Tb) of 1 °C. An accurate prediction of time of flowering was made based on an accumulated mean Tt requirement of 629 °Cdays from e-f (R²=0·91, P<0·001). Fully irrigated crops had higher maximum dry matter accumulation (maxDM; 1093 g/m²), duration of exponential growth (DUR; 99 days), weighted mean absolute growth rate (WMAGR; 12·2 g/m² per day) and maximum crop growth rate (MGR; 17·1 g/m² per day). In 1998/99 the positive response of maxDM and MGR depended on a significant (P<0·01) interaction between irrigation and sowing date. The maxDM during the season was highly correlated with DUR and MGR (R²=0·79 and 0·65). It is concluded that to maximize chickpea biological yield in the dry season of the cool-temperate subhumid climate of Canterbury, irrigation should extend across all phenological stages
Mott Transition, Compressibility Divergence and P-T Phase Diagram of Layered Organic Superconductors: An Ultrasonic Investigation
The phase diagram of the organic superconductor
-(BEDT-TTF)Cu[N(CN)Cl has been investigated by ultrasonic
velocity measurements under helium gas pressure. Different phase transitions
were identified trough several elastic anomalies characterized from isobaric
and isothermal sweeps. Our data reveal two crossover lines that end on the
critical point terminating the first-order Mott transition line. When the
critical point is approached along these lines, we observe a dramatic softening
of the velocity which is consistent with a diverging compressibility of the
electronic degrees of freedom.Comment: 4 pages, 5 figure
The nonlinear Bernstein-Schr\"odinger equation in Economics
In this paper we relate the Equilibrium Assignment Problem (EAP), which is
underlying in several economics models, to a system of nonlinear equations that
we call the "nonlinear Bernstein-Schr\"odinger system", which is well-known in
the linear case, but whose nonlinear extension does not seem to have been
studied. We apply this connection to derive an existence result for the EAP,
and an efficient computational method.Comment: 8 pages, submitted to Lecture Notes in Computer Scienc
- …