6,859 research outputs found

    Microscopic theory of the pseudogap and Peierls transition in quasi-one-dimensional materials

    Get PDF
    The problem of deriving from microscopic theory a Ginzburg-Landau free energy functional to describe the Peierls or charge-density-wave transition in quasi-one-dimensional materials is considered. Particular attention is given to how the thermal lattice motion affects the electronic states. Near the transition temperature the thermal lattice motion produces a pseudogap in the density of states at the Fermi level. Perturbation theory diverges and the traditional quasi-particle or Fermi liquid picture breaks down. The pseudogap causes a significant modification of the coefficients in the Ginzburg-Landau functional from their values in the rigid lattice approximation, which neglects the effect of the thermal lattice motion. To appear in Physical Review B.Comment: 21 pages, RevTeX, 5 figures in uuencoded compressed tar fil

    Mott Transition, Compressibility Divergence and P-T Phase Diagram of Layered Organic Superconductors: An Ultrasonic Investigation

    Full text link
    The phase diagram of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2Cl has been investigated by ultrasonic velocity measurements under helium gas pressure. Different phase transitions were identified trough several elastic anomalies characterized from isobaric and isothermal sweeps. Our data reveal two crossover lines that end on the critical point terminating the first-order Mott transition line. When the critical point is approached along these lines, we observe a dramatic softening of the velocity which is consistent with a diverging compressibility of the electronic degrees of freedom.Comment: 4 pages, 5 figure

    Density Matrix Renormalization Group Study of the S=1/2 Anisotropic Antiferromagnetic Heisenberg Chains with Quasiperiodic Exchange Modulation

    Full text link
    The low energy behavior of the S=1/2 antiferromagnetic XY-like XXZ chains with precious mean quasiperiodic exchange modulation is studied by the density matrix renormalization group method. It is found that the energy gap of the chain with length N scales as exp(cNω)\exp (-cN^{\omega}) with nonuniversal exponent ω\omega if the Ising component of the exhange coupling is antiferromagnetic. This behavior is expected to be the characteristic feature of the quantum spin chains with relevant aperiodicity. This is in contrast to the XY chain for which the precious mean exchange modulation is marginal and the gap scales as NzN^{-z}. On the contrary, it is also verified that the energy gap scales as N1N^{-1} if the Ising component of the exhange coupling is ferromagnetic. Our results are not only consistent with the recent bosonization analysis of Vidal, Mouhanna and Giamarchi but also clarify the nature of the strong coupling regime which is inaccesssible by the bosonization approach.Comment: 8 pages, 15 figures, 1 table; Proceedings of the workshop 'Frontiers in Magnetism', Kyoto, Oct. 199

    Another short-burst host galaxy with an optically obscured high star formation rate: The case of GRB 071227

    Full text link
    We report on radio continuum observations of the host galaxy of the short gamma-ray burst 071227 (z=0.381) with the Australia Telescope Compact Array (ATCA). We detect the galaxy in the 5.5 GHz band with an integrated flux density of Fnu = 43 +/- 11 microJy, corresponding to an unobscured star-formation rate (SFR) of about 24 Msun/yr, forty times higher than what was found from optical emission lines. Among the ~30 well-identified and studied host galaxies of short bursts this is the third case where the host is found to undergo an episode of intense star formation. This suggests that a fraction of all short-burst progenitors hosted in star-forming galaxies could be physically related to recent star formation activity, implying a relatively short merger time scale.Comment: 6 pages, ApJ, accepted for publicatio

    Magnetoresistance and magnetic breakdown in the quasi-two-dimensional conductors (BEDT-TTF)2_2MHg(SCN)4_4[M=K,Rb,Tl]

    Get PDF
    The magnetic field dependence of the resistance of (BEDT-TTF)2_2MHg(SCN)4_4[M=K,Rb,Tl] in the density-wave phase is explained in terms of a simple model involving magnetic breakdown and a reconstructed Fermi surface. The theory is compared to measurements in pulsed magnetic fields up to 51 T. The value implied for the scattering time is consistent with independent determinations. The energy gap associated with the density-wave phase is deduced from the magnetic breakdown field. Our results have important implications for the phase diagram.Comment: 5 pages, RevTeX + epsf, 3 figures. To appear in Physical Review B, Rapid Communications, September 15, 199

    Distributions of gaps and end-to-end correlations in random transverse-field Ising spin chains

    Full text link
    A previously introduced real space renormalization-group treatment of the random transverse-field Ising spin chain is extended to provide detailed information on the distribution of the energy gap and the end-to-end correlation function for long chains with free boundary conditions. Numerical data, using the mapping of the problem to free fermions, are found to be in good agreement with the analytic finite size scaling predictions.Comment: 12 pages revtex, 10 figures, submitted to Phys. Rev.

    Quantum entanglement between electronic and vibrational degrees of freedom in molecules

    Full text link
    We consider the quantum entanglement of the electronic and vibrational degrees of freedom in molecules with a tendency towards double welled potentials using model coupled harmonic diabatic potential-energy surfaces. The von Neumann entropy of the reduced density matrix is used to quantify the electron-vibration entanglement for the lowest two vibronic wavefunctions in such a bipartite system. Significant entanglement is found only in the region in which the ground vibronic state contains a density profile that is bimodal (i.e., contains two separate local minima). However, in this region two distinct types of entanglement are found: (1) entanglement that arises purely from the degeneracy of energy levels in the two potential wells and which is destroyed by slight asymmetry, and (2) entanglement that involves strongly interacting states in each well that is relatively insensitive to asymmetry. These two distinct regions are termed fragile degeneracy-induced entanglement and persistent entanglement, respectively. Six classic molecular systems describable by two diabatic states are considered: ammonia, benzene, semibullvalene, pyridine excited triplet states, the Creutz-Taube ion, and the radical cation of the "special pair" of chlorophylls involved in photosynthesis. These chemically diverse systems are all treated using the same general formalism and the nature of the entanglement that they embody is elucidated

    Exact results for quantum phase transitions in random XY spin chains

    Get PDF
    The effect of disorder on the quantum phase transitions induced by a transverse field, anisotropy, and dimerization in XY spin chains is investigated. The low-energy behavior near the critical point is described by a Dirac-type equation with a random mass for which an exact analytic treatment is possible. Results obtained for the dynamical critical exponent, the specific heat, and transverse susceptibility agree with results recently obtained using a real space renormalization group decimation technique, supporting Fisher's claim that it is exact. A non-zero transverse field changes the universality class of the anisotropy transition.Comment: 5 pages, RevTeX + epsf, 2 figures
    corecore