776 research outputs found

    The link between post-qualification experience and self-confidence ratings in two problem-solving domains: a study of radiation therapists

    Get PDF
    Recognising one’s abilities and limits in clinical tasks is a valuable part of professionalism. This study investigated the self-ratings of problem-solving confidence of radiation therapists (RTs) in two domains: clinical scenarios and critical thinking items (CTIs). We divided the 60 participants into three groups based on post-qualification experience (PQE), and found that greater PQE was linkedwith higher selfrated confidence for clinical scenarios, but not for CTIs

    Fast, easy and efficient: site-specific insertion of transgenes into Enterobacterial chromosomes using Tn7 without need for selection of the insertion event

    Get PDF
    BACKGROUND: Inserting transgenes into bacterial chromosomes is generally quite involved, requiring a selection for cells carrying the insertion, usually for drug-resistance, or multiple cumbersome manipulations, or both. Several approaches use phage λ red recombination, which allows for the possibility of mutagenesis of the transgene during a PCR step. RESULTS: We present a simple, rapid and highly efficient method for transgene insertion into the chromosome of Escherichia coli, Salmonella or Shigella at a benign chromosomal site using the site-specific recombination machinery of the transposon Tn7. This method requires very few manipulations. The transgene is cloned into a temperature-sensitive delivery plasmid and transformed into bacterial cells. Growth at the permissive temperature with induction of the recombination machinery leads to transgene insertion, and subsequent growth at the nonpermissive temperature cures the delivery plasmid. Transgene insertion is highly site-specific, generating insertions solely at the Tn7 attachment site and so efficient that it is not necessary to select for the insertion. CONCLUSION: This method is more efficient and straightforward than other techniques for transgene insertion available for E. coli and related bacteria, making moving transgenes from plasmids to a chromosomal location a simple matter. The non-requirement for selection is particularly well suited for use in development of unmarked strains for environmental release, such as live-vector vaccine strains, and also for promoter-fusion studies, and experiments in which every bacterial cell must express a transgene construct

    Consumers and community

    Full text link

    Earthquake distribution patterns in Africa: their relationship to variations in lithospheric and geological structure, and their rheological implications

    Get PDF
    We use teleseismic waveform inversion, along with depth phase analysis, to constrain the centroid depths and source parameters of large African earthquakes. The majority of seismic activity is concentrated along the East African Rift System, with additional active regions along stretches of the continental margins in north and east Africa, and in the Congo Basin. We examine variations in the seismogenic thickness across Africa, based on a total of 227 well-determined earthquake depths, 112 of which are new to this study. Seismogenic thickness varies in correspondence with lithospheric thickness, as determined from surface wave tomography, with regions of thick lithosphere being associated with seismogenic thicknesses of up to 40 km. In regions of thin lithosphere, the seismogenic thickness is typically limited to ≤20 km. Larger seismogenic thicknesses also correlate with regions that have dominant tectonothermal ages of ≥1500 Ma, where the East African Rift passes around the Archean cratons of Africa, through the older Proterozoic mobile belts. These correlations are likely to be related to the production, affected by method and age of basement formation, and preservation, affected by lithospheric thickness, of a strong, anhydrous lower crust. The Congo Basin contains the only compressional earthquakes in the continental interior. Simple modelling of the forces induced by convective support of the African plate, based on long-wavelength free-air gravity anomalies, indicates that epeirogenic effects are sufficient to account for the localization and occurrence of both extensional and compressional deformation in Africa. Seismicity along the margins of Africa reflects a mixture between oceanic and continental seismogenic characteristics, with earthquakes in places extending to 40 km depth

    Solar Particle Acceleration at Reconnecting 3D Null Points

    Full text link
    Context: The strong electric fields associated with magnetic reconnection in solar flares are a plausible mechanism to accelerate populations of high energy, non-thermal particles. One such reconnection scenario occurs at a 3D magnetic null point, where global plasma flows give rise to strong currents in the spine axis or fan plane. Aims: To understand the mechanism of charged particle energy gain in both the external drift region and the diffusion region associated with 3D magnetic reconnection. In doing so we evaluate the efficiency of resistive spine and fan models for particle acceleration, and find possible observables for each. Method: We use a full orbit test particle approach to study proton trajectories within electromagnetic fields that are exact solutions to the steady and incompressible magnetohydrodynamic equations. We study single particle trajectories and find energy spectra from many particle simulations. The scaling properties of the accelerated particles with respect to field and plasma parameters is investigated. Results: For fan reconnection, strong non-uniform electric drift streamlines can accelerate the bulk of the test particles. The highest energy gain is for particles that enter the current sheet, where an increasing "guide field" stabilises particles against ejection. The energy is only limited by the total electric potential energy difference across the fan current sheet. The spine model has both slow external electric drift speed and weak energy gain for particles reaching the current sheet. Conclusions: The electromagnetic fields of fan reconnection can accelerate protons to the high energies observed in solar flares, gaining up to 0.1 GeV for anomalous values of resistivity. However, the spine model, which gave a harder energy spectrum in the ideal case, is not an efficient accelerator after pressure constraints in the resistive model are included.Comment: 15 pages, 14 figures. Submitted to Astronomy and Astrophysic

    Access to forensic science. [Case study]

    Get PDF
    This case study discusses an after-school programme for secondary-school pupils from "low attainment/progression" schools, which aimed to facilitate wider access to university - particularly in STEM subjects. The course focused specifically on toxicology, with classes based in RGU's chemistry-, microbiology-, molecular biology- and computing laboratories
    • …
    corecore