161 research outputs found

    The significance of circadian rhythms and dysrhythmias in critical illness.

    Get PDF
    Many physiological and cellular processes cycle with time, with the period between one peak and the next being roughly equal to 24 h. These circadian rhythms underlie 'permissive homeostasis', whereby anticipation of periods of increased energy demand or stress may enhance the function of individual cells, organ systems or whole organisms. Many physiological variables related to survival during critical illness have a circadian rhythm, including the sleep/wake cycle, haemodynamic and respiratory indices, immunity and coagulation, but their clinical significance remains underappreciated. Critically ill patients suffer from circadian dysrhythmia, manifesting overtly as sleep disturbance and delirium, but with widespread covert effects on cellular and organ function. Environmental and pharmacological strategies that ameliorate or prevent circadian dysrhythmia have demonstrated clinical benefit. Harnessing these important biological phenomena to match metabolic supply to demand and bolster cell defenses at the apposite time may be a future therapeutic strategy in the intensive care unit

    Divergent trajectories of cellular bioenergetics, intermediary metabolism and systemic redox status in survivors and non-survivors of critical illness.

    Get PDF
    BACKGROUND: Numerous pathologies result in multiple-organ failure, which is thought to be a direct consequence of compromised cellular bioenergetic status. Neither the nature of this phenotype nor its relevance to survival are well understood, limiting the efficacy of modern life-support. METHODS: To explore the hypothesis that survival from critical illness relates to changes in cellular bioenergetics, we combined assessment of mitochondrial respiration with metabolomic, lipidomic and redox profiling in skeletal muscle and blood, at multiple timepoints, in 21 critically ill patients and 12 reference patients. RESULTS: We demonstrate an end-organ cellular phenotype in critical illness, characterized by preserved total energetic capacity, greater coupling efficiency and selectively lower capacity for complex I and fatty acid oxidation (FAO)-supported respiration in skeletal muscle, compared to health. In survivors, complex I capacity at 48Ā h was 27% lower than in non-survivors (pĀ =Ā 0.01), but tended to increase by day 7, with no such recovery observed in non-survivors. By day 7, survivors' FAO enzyme activity was double that of non-survivors (pĀ =Ā 0.048), in whom plasma triacylglycerol accumulated. Increases in both cellular oxidative stress and reductive drive were evident in early critical illness compared to health. Initially, non-survivors demonstrated greater plasma total antioxidant capacity but ultimately higher lipid peroxidation compared to survivors. These alterations were mirrored by greater levels of circulating total free thiol and nitrosated species, consistent with greater reductive stress and vascular inflammation, in non-survivors compared to survivors. In contrast, no clear differences in systemic inflammatory markers were observed between the two groups. CONCLUSION: Critical illness is associated with rapid, specific and coordinated alterations in the cellular respiratory machinery, intermediary metabolism and redox response, with different trajectories in survivors and non-survivors. Unravelling the cellular and molecular foundation of human resilience may enable the development of more effective life-support strategies

    Perioperative redox changes in patients undergoing hepato-pancreatico-biliary cancer surgery

    Get PDF
    Abstract Background Tissue injury induces inflammation and the surgical stress response, which are thought to be central to the orchestration of recovery or deterioration after surgery. Enhanced formation of reactive oxygen and nitrogen species accompanies the inflammatory response and triggers separate but integrated reduction/oxidation (redox) pathways that lead to oxidative and/or nitrosative stress (ONS). Quantitative information on ONS in the perioperative period is scarce. This single-centre exploratory study investigated the effects of major surgery on ONS and systemic redox status and their potential associations with postoperative morbidity. Methods Blood was collected from 56 patients at baseline, end of surgery (EoS) and the first postoperative day (day-1). Postoperative morbidity was recorded using the Clavien-Dindo classification and further categorised into minor, moderate and severe. Plasma/serum measures included markers of lipid oxidation (thiobarbituric acid-reactive substances; TBARS, 4-hydroxynonenal; 4-HNE, 8-iso-prostaglandin F2āŗ; 8-isoprostanes). Total reducing capacity was measured using total free thiols (TFTs) and ferric-reducing ability of plasma (FRAP). Nitric oxide (NO) formation/metabolism was measured using cyclic guanosine monophosphate (cGMP), nitrite, nitrate and total nitroso-species (RxNO). Interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-āŗ) were measured to evaluate inflammation. Results Both oxidative stress (TBARS) and nitrosative stress (total nitroso-species) increased from baseline to EoS (+14%, P = 0.003 and +138%, P < 0.001, respectively), along with an increase in overall reducing capacity (+9%, P = 0.03) at EoS and protein-adjusted total free thiols (+12%, P = 0.001) at day-1 after surgery. Nitrite, nitrate and cGMP concentrations declined concomitantly from baseline to day-1. Baseline nitrate was 60% higher in the minor morbidity group compared to severe (P = 0.003). The increase in intraoperative TBARS was greater in severe compared to minor morbidity (P = 0.01). The decline in intraoperative nitrate was more marked in the minor morbidity group compared to severe (P < 0.001), whereas the cGMP decline was greatest in the severe morbidity group (P = 0.006). Conclusion In patients undergoing major HPB surgery, intraoperative oxidative and nitrosative stress increased, with a concomitant increase in reductive capacity. Baseline nitrate was inversely associated with postoperative morbidity, and the hallmarks of poor postoperative outcome include changes in both oxidative stress and NO metabolism

    Time of Day and its Association with Risk of Death and Chance of Discharge in Critically Ill Patients: A Retrospective Study.

    Get PDF
    Outcomes following admission to intensive care units (ICU) may vary with time and day. This study investigated associations between time of day and risk of ICU mortality and chance of ICU discharge in acute ICU admissions. Adult patients (ageā€‰ā‰„ā€‰18 years) who were admitted to ICUs participating in the Austrian intensive care database due to medical or surgical urgencies and emergencies between January 2012 and December 2016 were included in this retrospective study. Readmissions were excluded. Statistical analysis was conducted using the Fine-and-Gray proportional subdistribution hazards model concerning ICU mortality and ICU discharge within 30 days adjusted for SAPS 3 score. 110,628 admissions were analysed. ICU admission during late night and early morning was associated with increased hazards for ICU mortality; HR: 1.17; 95% CI: 1.08-1.28 for 00:00-03:59, HR: 1.16; 95% CI: 1.05-1.29 for 04:00-07:59. Risk of death in the ICU decreased over the day; lowest HR: 0.475, 95% CI: 0.432-0.522 for 00:00-03:59. Hazards for discharge from the ICU dropped sharply after 16:00; lowest HR: 0.024; 95% CI: 0.019-0.029 for 00:00-03:59. We conclude that there are "time effects" in ICUs. These findings may spark further quality improvement efforts

    The revised Bethesda guidelines: extent of utilization in a university hospital medical center with a cancer genetics program

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 1996, the National Cancer Institute hosted an international workshop to develop criteria to identify patients with colorectal cancer who should be offered microsatellite instability (MSI) testing due to an increased risk for Hereditary Nonpolyposis Colorectal Cancer (HNPCC). These criteria were further modified in 2004 and became known as the revised Bethesda Guidelines. Our study aimed to retrospectively evaluate the percentage of patients diagnosed with HNPCC tumors in 2004 who met revised Bethesda criteria for MSI testing, who were referred for genetic counseling within our institution.</p> <p>Methods</p> <p>All HNPCC tumors diagnosed in 2004 were identified by accessing CoPath, an internal database. Both the Tumor Registry and patients' electronic medical records were accessed to collect all relevant family history information. The list of patients who met at least one of the revised Bethesda criteria, who were candidates for MSI testing, was then cross-referenced with the database of patients referred for genetic counseling within our institution.</p> <p>Results</p> <p>A total of 380 HNPCC-associated tumors were diagnosed at our institution during 2004 of which 41 (10.7%) met at least one of the revised Bethesda criteria. Eight (19.5%) of these patients were referred for cancer genetic counseling of which 2 (25%) were seen by a genetics professional. Ultimately, only 4.9% of patients eligible for MSI testing in 2004 were seen for genetic counseling.</p> <p>Conclusion</p> <p>This retrospective study identified a number of barriers, both internal and external, which hindered the identification of individuals with HNPCC, thus limiting the ability to appropriately manage these high risk families.</p

    Identifying related cancer types based on their incidence among people with multiple cancers

    Get PDF
    BACKGROUND: There are several reasons that someone might be diagnosed with more than one primary cancer. The aim of this analysis was to determine combinations of cancer types that occur more often than expected. The expected values in previous analyses are based on age-and-gender-adjusted risks in the population. However, if cancer in people with multiple primaries is somehow different than cancer in people with a single primary, then the expected numbers should not be based on all diagnoses in the population. METHODS: In people with two or more cancer types, the probability that a specific type is diagnosed was determined as the number of diagnoses for that cancer type divided by the total number of cancer diagnoses. If two types of cancer occur independently of one another, then the probability that someone will develop both cancers by chance is the product of the individual probabilities for each type. The expected number of people with both cancers is the number of people at risk multiplied by the separate probabilities for each cancer. We performed the analysis on records of cancer diagnoses in British Columbia, Canada between 1970 and 2004. RESULTS: There were 28,159 people with records of multiple primary cancers between 1970 and 2004, including 1,492 people with between three and seven diagnoses. Among both men and women, the combinations of esophageal cancer with melanoma, and kidney cancer with oral cancer, are observed more than twice as often as expected. CONCLUSION: Our analysis suggests there are several pairs of primary cancers that might be related by a shared etiological factor. We think that our method is more appropriate than others when multiple diagnoses of primary cancer are unlikely to be the result of therapeutic or diagnostic procedures

    The laser-hybrid accelerator for radiobiological applications

    Get PDF
    The `Laser-hybrid Accelerator for Radiobiological Applications', LhARA, is conceived as a novel, uniquely-flexible facility dedicated to the study of radiobiology. The technologies demonstrated in LhARA, which have wide application, will be developed to allow particle-beam therapy to be delivered in a completely new regime, combining a variety of ion species in a single treatment fraction and exploiting ultra-high dose rates. LhARA will be a hybrid accelerator system in which laser interactions drive the creation of a large flux of protons or light ions that are captured using a plasma (Gabor) lens and formed into a beam. The laser-driven source allows protons and ions to be captured at energies significantly above those that pertain in conventional facilities, thus evading the current space-charge limit on the instantaneous dose rate that can be delivered. The laser-hybrid approach, therefore, will allow the vast ``terra incognita'' of the radiobiology that determines the response of tissue to ionising radiation to be studied with protons and light ions using a wide variety of time structures, spectral distributions, and spatial configurations at instantaneous dose rates up to and significantly beyond the ultra-high dose-rate `FLASH' regime. It is proposed that LhARA be developed in two stages. In the first stage, a programme of in vitro radiobiology will be served with proton beams with energies between 10MeV and 15MeV. In stage two, the beam will be accelerated using a fixed-field accelerator (FFA). This will allow experiments to be carried out in vitro and in vivo with proton beam energies of up to 127MeV. In addition, ion beams with energies up to 33.4MeV per nucleon will be available for in vitro and in vivo experiments. This paper presents the conceptual design for LhARA and the R&D programme by which the LhARA consortium seeks to establish the facility

    Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study

    Get PDF
    Background: Originally believed to be a rare phenomenon, heteroplasmy - the presence of more than one mitochondrial DNA (mtDNA) variant within a cell, tissue, or individual - is emerging as an important component of eukaryotic genetic diversity. Heteroplasmies can be used as genetic markers in applications ranging from forensics to cancer diagnostics. Yet the frequency of heteroplasmic alleles may vary from generation to generation due to the bottleneck occurring during oogenesis. Therefore, to understand the alterations in allele frequencies at heteroplasmic sites, it is of critical importance to investigate the dynamics of maternal mtDNA transmission. Results: Here we sequenced, at high coverage, mtDNA from blood and buccal tissues of nine individuals from three families with a total of six maternal transmission events. Using simulations and re-sequencing of clonal DNA, we devised a set of criteria for detecting polymorphic sites in heterogeneous genetic samples that is resistant to the noise originating from massively parallel sequencing technologies. Application of these criteria to nine human mtDNA samples revealed four heteroplasmic sites. Conclusions: Our results suggest that the incidence of heteroplasmy may be lower than estimated in some other recent re-sequencing studies, and that mtDNA allelic frequencies differ significantly both between tissues of the same individual and between a mother and her offspring. We designed our study in such a way that the complete analysis described here can be repeated by anyone either at our site or directly on the Amazon Cloud. Our computational pipeline can be easily modified to accommodate other applications, such as viral re-sequencing

    Differentiation of mouse bone marrow derived stem cells toward microglia-like cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglia, the macrophages of the brain, have been implicated in the causes of neurodegenerative diseases and display a loss of function during aging. Throughout life, microglia are replenished by limited proliferation of resident microglial cells. Replenishment by bone marrow-derived progenitor cells is still under debate. In this context, we investigated the differentiation of mouse microglia from bone marrow (BM) stem cells. Furthermore, we looked at the effects of FMS-like tyrosine kinase 3 ligand (Flt3L), astrocyte-conditioned medium (ACM) and GM-CSF on the differentiation to microglia-like cells.</p> <p>Methods</p> <p>We assessed <it>in vitro-</it>derived microglia differentiation by marker expression (CD11b/CD45, F4/80), but also for the first time for functional performance (phagocytosis, oxidative burst) and <it>in situ </it>migration into living brain tissue. Integration, survival and migration were assessed in organotypic brain slices.</p> <p>Results</p> <p>The cells differentiated from mouse BM show function, markers and morphology of primary microglia and migrate into living brain tissue. Flt3L displays a negative effect on differentiation while GM-CSF enhances differentiation.</p> <p>Conclusion</p> <p>We conclude that <it>in vitro-</it>derived microglia are the phenotypic and functional equivalents to primary microglia and could be used in cell therapy.</p

    Shipping blood to a central laboratory in multicenter clinical trials: effect of ambient temperature on specimen temperature, and effects of temperature on mononuclear cell yield, viability and immunologic function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical trials of immunologic therapies provide opportunities to study the cellular and molecular effects of those therapies and may permit identification of biomarkers of response. When the trials are performed at multiple centers, transport and storage of clinical specimens become important variables that may affect lymphocyte viability and function in blood and tissue specimens. The effect of temperature during storage and shipment of peripheral blood on subsequent processing, recovery, and function of lymphocytes is understudied and represents the focus of this study.</p> <p>Methods</p> <p>Peripheral blood samples (n = 285) from patients enrolled in 2 clinical trials of a melanoma vaccine were shipped from clinical centers 250 or 1100 miles to a central laboratory at the sponsoring institution. The yield of peripheral blood mononuclear cells (PBMC) collected before and after cryostorage was correlated with temperatures encountered during shipment. Also, to simulate shipping of whole blood, heparinized blood from healthy donors was collected and stored at 15Ā°C, 22Ā°C, 30Ā°C, or 40Ā°C, for varied intervals before isolation of PBMC. Specimen integrity was assessed by measures of yield, recovery, viability, and function of isolated lymphocytes. Several packaging systems were also evaluated during simulated shipping for the ability to maintain the internal temperature in adverse temperatures over time.</p> <p>Results</p> <p>Blood specimen containers experienced temperatures during shipment ranging from -1 to 35Ā°C. Exposure to temperatures above room temperature (22Ā°C) resulted in greater yields of PBMC. Reduced cell recovery following cryo-preservation as well as decreased viability and immune function were observed in specimens exposed to 15Ā°C or 40Ā°C for greater than 8 hours when compared to storage at 22Ā°C. There was a trend toward improved preservation of blood specimen integrity stored at 30Ā°C prior to processing for all time points tested. Internal temperatures of blood shipping containers were maintained longer in an acceptable range when warm packs were included.</p> <p>Conclusions</p> <p>Blood packages shipped overnight by commercial carrier may encounter extreme seasonal temperatures. Therefore, considerations in the design of shipping containers should include protecting against extreme ambient temperature deviations and maintaining specimen temperature above 22Ā°C or preferably near 30Ā°C.</p
    • ā€¦
    corecore