11 research outputs found

    Resonance Raman scattering of catalytic beacons for DNA detection

    No full text
    A novel method for analysing the catalytic action of a DNAzyme is reported. Resonance Raman scattering (RRS) is shown to successfully monitor the oxidation of two different peroxidase substrates and has been implemented in an assay for the detection of target DNA, providing a more sensitive method of analysis than current colorimetric techniques

    Recent developments and future directions in SERS for bioanalysis

    No full text
    The ability to develop new and sensitive methods of biomolecule detection is crucial to the advancement of pre-clinical disease diagnosis and effective patient specific treatment. Surface enhanced Raman scattering (SERS) is an optical spectroscopy amenable to this goal, as it is capable of extremely sensitive biomolecule detection and multiplexed analysis. This perspective highlights where SERS has been successfully used to detect target biomolecules, specifically DNA and proteins, and where in vivo analysis has been successfully utilised. The future of SERS development is discussed and emphasis is placed on the steps required to transport this novel technique from the research laboratory to a clinical setting for medical diagnostics

    Nanoparticle assembly for sensitive DNA detection using SERRS

    No full text
    SERRS (surface-enhanced resonance Raman scattering) is a vibrational technique, whereby a relatively weak Raman scattering effect is enhanced through the use of a visible chromophore and a roughened metal surface. The direct analysis of DNA by SERRS requires the modification of a nucleic acid sequence to incorporate a chromophore, and adsorption of the modified sequence on to a roughened metal surface. Aggregated metallic nanoparticles are commonly used in the analysis of dye-labelled DNA by SERRS, allowing for detection levels that rival those gained from standard fluorescence-based techniques. In the present paper, we report on how SERRS can be exploited for the analysis of clinically relevant DNA samples. We also report on the ability of nanoparticles to aggregate as the result of a biologically significant event, as opposed to the use of an external charge-modifying agent. The self-assembly of metallic nanoparticles is shown to be a promising new technique in the move towards extremely sensitive methods of DNA analysis by SERRS
    corecore