11,786 research outputs found
Helical rotary screw expander power system
An energy converter for the development of wet steam geothermal fields is described. A project to evaluate and characterize a helical rotary screw expander for geothermal applications is discussed. The helical screw expander is a positive displacement machine which can accept untreated corrosive mineralized water of any quality from a geothermal well. The subjects of corrosion, mineral deposition, the expansion process, and experience with prototype devices are reported
Using space resources
The topics covered include the following: reducing the cost of space exploration; the high cost of shipping; lunar raw materials; some useful space products; energy from the moon; ceramic, glass, and concrete construction materials; mars atmosphere resources; relationship to the Space Exploration Initiative (SEI); an evolutionary approach to using space resources; technology development; and oxygen and metal coproduction
Recommended from our members
On Birthing Dancing Stars: The Need for Bounded Chaos in Information Interaction
While computers causing chaos is acommon social trope, nearly the entirety of the history of computing is dedicated to generating order. Typical interactive information retrieval tasks ask computers to support the traversal and exploration of large, complex information spaces. The implicit assumption is that they are to support users in simplifying the complexity (i.e. in creating order from chaos). But for some types of task, particularly those that involve the creative application or synthesis of knowledge or the creation of new knowledge, this assumption may be incorrect. It is increasingly evident that perfect order—and the systems we create with it—support highly-structured information tasks well, but provide poor support for less-structured tasks.We need digital information environments that help create a little more chaos from order to spark creative thinking and knowledge creation. This paper argues for the need for information systems that offerwhat we term ‘bounded chaos’, and offers research directions that may support the creation of such interface
Impact glasses from the less than 20-micrometer fraction of Apollo 17 soils 72501 and 78221
The chemical compositions of microscopic glasses produced during meteoroid impacts on the lunar surface provide information regarding the various fractionation processes that accompany these events. To learn more about these fractionation processes, we studied the compositions of submicrometer glass spheres from two Apollo 17 sampling sites using electron microscopy. The majority of the analyzed glasses show evidence for varying degrees of impact-induced chemical fractionation. Among these are HASP glasses (high-Al, Si-poor), which are believed to represent the refractory residuum left after the loss of volatile elements (e.g., Si, Fe, Na) from the precursor material. In addition to HASP-type glasses, we also observed a group of volatile-rich, Al-poor (VRAP) glasses that represent condensates of vaporized volatile constituents, and are complementary to the HASP compositions. High-Ti glasses were also found during the course of this study, and are documented here for the first time
Supporting reinterpretation in computer-aided conceptual design
This paper presents research that aims to inform the development of computational tools that better support design exploration and idea transformation - key objectives in conceptual design. Analyses of experimental data from two fields - product design and architecture - suggest that the interactions of designers with their sketches can be formalised according to a finite number of generalised shape rules defined within a shape grammar. Such rules can provide a basis for the generation of alternative design concepts and they have informed the development of a prototype shape synthesis system that supports dynamic reinterpretation of shapes in design activity. The notion of 'sub-shapes' is introduced and the significance of these to perception, recognition and the development of emergent structures is discussed. The paper concludes with some speculation on how such a system might find application in a range of design fields
A ROSAT Survey of Contact Binary Stars
Contact binary stars are common variable stars which are all believed to emit
relatively large fluxes of x-rays. In this work we combine a large new sample
of contact binary stars derived from the ROTSE-I telescope with x-ray data from
the ROSAT All-Sky Survey (RASS) to estimate the x-ray volume emissivity of
contact binary stars in the galaxy. We obtained x-ray fluxes for 140 contact
binaries from the RASS, as well as 2 additional stars observed by the
XMM-Newton observatory. From these data we confirm the emission of x-rays from
all contact binary systems, with typical luminosities of approximately 1.0 x
10^30 erg s^-1. Combining calculated luminosities with an estimated contact
binary space density, we find that contact binaries do not have strong enough
x-ray emission to account for a significant portion of the galactic x-ray
background.Comment: 19 pages, 5 figures, accepted by A
A relation between moduli space of D-branes on orbifolds and Ising model
We study D-branes transverse to an abelian orbifold C^3/Z_n Z_n. The moduli
space of the gauge theory on the D-branes is analyzed by combinatorial
calculation based on toric geometry. It is shown that the calculation is
related to a problemto count the number of ground states of an
antiferromagnetic Ising model. The lattice on which the Ising model is defined
is a triangular one defined on the McKay quiver of the orbifold.Comment: 20 pages, 13 figure
Entropy measures for complex networks: Toward an information theory of complex topologies
The quantification of the complexity of networks is, today, a fundamental
problem in the physics of complex systems. A possible roadmap to solve the
problem is via extending key concepts of information theory to networks. In
this paper we propose how to define the Shannon entropy of a network ensemble
and how it relates to the Gibbs and von Neumann entropies of network ensembles.
The quantities we introduce here will play a crucial role for the formulation
of null models of networks through maximum-entropy arguments and will
contribute to inference problems emerging in the field of complex networks.Comment: (4 pages, 1 figure
Effects of weak anchoring on C1 and C2 chevron structures
We present a theoretical study of the effect of weak anchoring on the transition between C1 and C2 chevron structures in smectic C liquid crystals. We employ a continuum theory which allows for variable cone, azimuthal and layer tilt angles. Equilibrium profiles for the director cone and azimuthal angles in the C1 and C2 states are calculated from the standard Euler-Lagrange minimisation of the total energy of the system. By comparing the total energies of the C1 and C2 states we can determine the globally stable chevron profile and calculate the critical temperature for the C1-C2 transition, which depends on anchoring strength and pretilt angle variations
- …