3,414 research outputs found

    The Arecibo L-band Feed Array Zone of Avoidance Survey I: Precursor Observations through the Inner and Outer Galaxy

    Full text link
    The Arecibo L-band Feed Array (ALFA) is being used to conduct a low-Galactic latitude survey, to map the distribution of galaxies and large-scale structures behind the Milky Way through detection of galaxies' neutral hydrogen (HI) 21-cm emission. This Zone of Avoidance (ZOA) survey finds new HI galaxies which lie hidden behind the Milky Way, and also provides redshifts for partially-obscured galaxies known at other wavelengths. Before the commencement of the full survey, two low-latitude precursor regions were observed, totalling 138 square degrees, with 72 HI galaxies detected. Detections through the inner Galaxy generally have no cataloged counterparts in any other waveband, due to the heavy extinction and stellar confusion. Detections through the outer Galaxy are more likely to have 2MASS counterparts. We present the results of these precursor observations, including a catalog of the detected galaxies, with their HI parameters. The survey sensitivity is well described by a flux- and linewidth-dependent signal-to-noise ratio of 6.5. ALFA ZOA galaxies which also have HI measurements in the literature show good agreement between our measurements and previous work. The inner Galaxy precursor region was chosen to overlap the HI Parkes Zone of Avoidance Survey so ALFA performance could be quickly assessed. The outer Galaxy precursor region lies north of the Parkes sky. Low-latitude large-scale structure in this region is revealed, including an overdensity of galaxies near l = 183 deg and between 5000 - 6000 km/s in the ZOA. The full ALFA ZOA survey will be conducted in two phases: a shallow survey using the observing techniques of the precursor observations, and also a deep phase with much longer integration time, with thousands of galaxies predicted for the final catalog.Comment: 26 pages, 7 figures, 2 tables, Astronomical Journal accepte

    Infanticide in wolves: seasonality of mortalities and attacks at dens support evolution of territoriality

    Get PDF
    Evidence for territoriality is usually correlative or post hoc as we observe the results of past selection that are challenging to detect. Wolves (Canis lupus) are considered territorial because of competition for food (resource defense), yet they exhibit classic intrinsic behaviors of social regulation (protection against infanticide). This emphasis on prey and infrequent opportunity to observe wild wolf behavior has led to little investigation into the causes of or competitive underpinnings in the evolution of wolf territoriality. We report 6 cases of territorial wolf packs attacking neighboring packs at or near their den; 2 attacks were observed in detail. In all cases, except perhaps one, the attacking pack killed adult wolves either at the den or near it; in 4 cases, pups were probably lost. Loss of pups led to future loss of territory and in one case pack cessation. Intraspecific killing (measured in collared adults only) peaked in April, the month when pups were born and helpless in dens, even though aggressive interactions were at their seasonal low. Twelve of 13 (92%) of the wolves killed during the denning season (March, April, May) were reproductive (males and females), and 8 of 12 were dominant individuals (highest ranking wolf for that sex in the pack). Wolf–wolf killings were also high in October and December, the beginning and middle of the nomadic season, respectively. Aggressive interactions were more frequent during the nomadic season when wolves were roaming their territory as a group compared to the denning season when wolf activity was centered on the den and pack members less cohesive. We conclude that attacks on dens are a more effective form of interpack competition than interference during the breeding season, the current best-supported hypothesis, and that protected pup-rearing space is the primary cause of wolf territoriality

    Joint analysis of stressors and ecosystem services to enhance restoration effectiveness

    Get PDF
    With increasing pressure placed on natural systems by growing human populations, both scientists and resource managers need a better understanding of the relationships between cumulative stress from human activities and valued ecosystem services. Societies often seek to mitigate threats to these services through large-scale, costly restoration projects, such as the over one billion dollar Great Lakes Restoration Initiative currently underway. To help inform these efforts, we merged high-resolution spatial analyses of environmental stressors with mapping of ecosystem services for all five Great Lakes. Cumulative ecosystem stress is highest in near-shore habitats, but also extends offshore in Lakes Erie, Ontario, and Michigan. Variation in cumulative stress is driven largely by spatial concordance among multiple stressors, indicating the importance of considering all stressors when planning restoration activities. In addition, highly stressed areas reflect numerous different combinations of stressors rather than a single suite of problems, suggesting that a detailed understanding of the stressors needing alleviation could improve restoration planning. We also find that many important areas for fisheries and recreation are subject to high stress, indicating that ecosystem degradation could be threatening key services. Current restoration efforts have targeted high-stress sites almost exclusively, but generally without knowledge of the full range of stressors affecting these locations or differences among sites in service provisioning. Our results demonstrate that joint spatial analysis of stressors and ecosystem services can provide a critical foundation for maximizing social and ecological benefits from restoration investments. www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213841110/-/DCSupplementa

    Higher order mode damper for low energy RHIC electron cooler SRF booster cavity

    Full text link
    To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under commissioning at BNL. The Linac of LEReC is designed to deliver a 1.6 MeV to 2.6 MeV electron beam, with rms dp/p less than 5e-4. A 704 MHz superconducting radio frequency (SRF) booster cavity in this Linac provides up to 2.2 MeV accelerating voltage. With such a low energy and very demanding energy spread requirement, control of Higher Order Modes (HOMs) in the cavities becomes critical and needs to be carefully evaluated to ensure minimum impact on the beam. In this paper, we report the multiphysics design of the HOM damper for this cavity to meet the energy spread requirement, as well as experimental results of the cavity with and without the HOM damper.Comment: 9 pages, 7 figure

    Pliocene Te Aute limestones, New Zealand: Expanding concepts for cool-water shelf carbonates

    Get PDF
    Acceptance of a spectrum of warm- through cold-water shallow-marine carbonate facies has become of fundamental importance for correctly interpreting the origin and significance of all ancient platform limestones. Among other attributes, properties that have become a hallmark for characterising many Cenozoic non-tropical occurrences include: (1) the presence of common bryozoan and epifaunal bivalve skeletons; (2) a calcite-dominated mineralogy; (3) relatively thin deposits exhibiting low rates of sediment accumulation; (4) an overall destructive early diagenetic regime; and (5) that major porosity destruction and lithification occur mainly in response to chemical compaction of calcitic skeletons during moderate to deep burial. The Pliocene Te Aute limestones are non-tropical skeletal carbonates formed at paleolatitudes near 40-42°S under the influence of commonly strong tidal flows along the margins of an actively deforming and differentially uplifting forearc basin seaway, immediately inboard of the convergent Pacific-Australian plate boundary off eastern North Island, New Zealand. This dynamic depositional and tectonic setting strongly influenced both the style and subsequent diagenetic evolution of the limestones. Some of the Te Aute limestones exhibit the above kinds of "normal" non-tropical characteristics, but others do not. For example, many are barnacle and/or bivalve dominated, and several include attributes that at least superficially resemble properties of certain tropical carbonates. In this regard, a number of the limestones are infaunal bivalve rich and dominated by an aragonite over a calcite primary mineralogy, with consequently relatively high diagenetic potential. Individual limestone units are also often rather thick (e.g., up to 50-300 m), with accumulation rates from 0.2 to 0.5 m/ka, and locally as high as 1 m/ka. Moreover, there can be a remarkable array of diagenetic features in the limestones, involving grain alteration and/or cementation to widely varying extents within any, or some combination of, the marine phreatic, burial, and meteoric diagenetic environments, including locally widespread development of meteoric cement sourced from aragonite dissolution. The message is that non-tropical shelf carbonates include a more diverse array of geological settings, of skeletal and mineralogical facies, and of diagenetic features than current sedimentary models mainly advocate. While several attributes positively distinguish tropical from non-tropical limestones, continued detailed documentation of the wide spectrum of shallow-marine carbonate deposits formed outside tropical regions remains an important challenge in carbonate sedimentology

    The S enantiomer of 2-hydroxyglutarate increases central memory CD8 populations and improves CAR-T therapy outcome

    Get PDF
    Cancer immunotherapy is advancing rapidly and gene-modified T cells expressing chimeric antigen receptors (CARs) show particular promise. A challenge of CAR-T cell therapy is that the ex vivo-generated CAR-T cells become exhausted during expansion in culture, and do not persist when transferred back to patients. It has become clear that naive and memory CD8 T cells perform better than the total CD8 T-cell populations in CAR-T immunotherapy because of better expansion, antitumor activity, and persistence, which are necessary features for therapeutic success and prevention of disease relapse. However, memory CAR-T cells are rarely used in the clinic due to generation challenges. We previously reported that mouse CD8 T cells cultured with the S enantiomer of the immunometabolite 2-hydroxyglutarate (S-2HG) exhibit enhanced antitumor activity. Here, we show that clinical-grade human donor CAR-T cells can be generated from naive precursors after culture with S-2HG. S-2HG-treated CAR-T cells establish long-term memory cells in vivo and show superior antitumor responses when compared with CAR-T cells generated with standard clinical protocols. This study provides the basis for a phase 1 clinical trial evaluating the activity of S-2HG-treated CD19-CAR-T cells in patients with B-cell malignancies

    First search for gravitational waves from the youngest known neutron star

    Get PDF
    We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search frequencies, we set 95% confidence upper limits of (0.7–1.2) × 10^(−24) on the intrinsic gravitational-wave strain, (0.4–4) × 10^(−4) on the equatorial ellipticity of the neutron star, and 0.005–0.14 on the amplitude of r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes. This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude
    corecore