5,966 research outputs found

    Self-pulsing dynamics in a cavity soliton laser

    Get PDF
    The dynamics of a broad-area vertical-cavity surface-emitting laser (VCSEL) with frequency-selective feedback supporting bistable spatial solitons is analyzed experimentally and theoretically. The transient dynamics of a switch-on of a soliton induced by an external optical pulse shows strong self-pulsing at the external-cavity round-trip time with at least ten modes excited. The numerical analysis indicates an even broader bandwidth and a transient sweep of the center frequency. It is argued that mode-locking of spatial solitons is an interesting and viable way to achieve three-dimensional, spatio-temporal self-localization and that the transients observed are preliminary indications of a transient cavity light bullet in the dynamics, though on a non negligible background

    Frequency and phase locking of laser cavity solitons

    Get PDF
    Self-localized states or dissipative solitons have the freedom of translation in systems with a homogeneous background. When compared to cavity solitons in coherently driven nonlinear optical systems, laser cavity solitons have the additional freedom of the optical phase. We explore the consequences of this additional Goldstone mode and analyse experimentally and numerically frequency and phase locking of laser cavity solitons in a vertical-cavity surface-emitting laser with frequency-selective feedback. Due to growth-related variations of the cavity resonance, the translational symmetry is usually broken in real devices. Pinning to different defects means that separate laser cavity solitons have different frequencies and are mutually incoherent. If two solitons are close to each other, however, their interaction leads to synchronization due to phase and frequency locking with strong similarities to the Adler-scenario of coupled oscillators

    The Hatch Dairy Experiment Station Farm

    Get PDF
    Cover title

    The Interaction between the ISM and Star Formation in the Dwarf Starburst Galaxy NGC 4214

    Get PDF
    We present the first interferometric study of the molecular gas in the metal-poor dwarf starburst galaxy NGC 4214. Our map of the 12CO(1-0) emission, obtained at the OVRO millimeter array, reveals an unexpected structural wealth. We detected three regions of molecular emission in the north-west (NW), south-east (SE) and centre of NGC 4214 which are in very different and distinct evolutionary stages (total molecular mass: 5.1 x 10^6 M_sun). These differences are apparent most dramatically when the CO morphologies are compared to optical ground based and HST imaging: massive star formation has not started yet in the NW region; the well-known starburst in the centre is the most evolved and star formation in the SE complex started more recently. We derive a star formation efficiency of 8% for the SE complex. Using high--resolution VLA observations of neutral hydrogen HI and our CO data we generated a total gas column density map for NGC 4214 (HI + H_2). No clear correlation is seen between the peaks of HI, CO and the sites of ongoing star formation. This emphasizes the irregular nature of dwarf galaxies. The HI and CO velocities agree well, so do the H-alpha velocities. In total, we cataloged 14 molecular clumps in NGC 4214. Our results from a virial mass analysis are compatible with a Galactic CO-to-H_2 conversion factor for NGC 4214 (lower than what is usually found in metal-poor dwarf galaxies).Comment: accepted for publication in the AJ (February 2001), full ps file at: ftp://ftp.astro.caltech.edu/users/fw/ngc4214/walter_prep.p

    Acquisition of anoikis resistance in human osteosarcoma cells does not alter sensitivity to chemotherapeutic agents

    Get PDF
    BACKGROUND: Chemotherapy-induced cell death can involve the induction of apoptosis. Thus, aberrant function of the pathways involved might result in chemoresistance. Since cell adhesion to the extracellular matrix acts as a survival factor that homeostatically maintains normal tissue architecture, it was tested whether acquisition of resistance to deadhesion-induced apoptosis (anoikis) in human osteosarcoma would result in resistance to chemotherapy. METHODS: Osteosarcoma cell lines (SAOS-2 and TE-85) obtained from ATCC and were maintained in complete Eagle's MEM medium. Suspension culture was established by placing cells in tissue culture wells coated with poly-HEMA. Cell cytotoxicity was determined using a live/dead cytotoxicity assay. Cell cycle/apoptosis analyses were performed using propidium iodide (PI) staining with subsequent FACS analysis. Apoptosis was also assayed by Annexin-FITC/PI staining. RESULTS: Etoposide, adriamycin, vinblastine, cisplatin and paclitaxel were able to induce apoptosis in human osteosarcoma cells SAOS-2 regardless of their anoikis resistance phenotype or the culture conditions (adhered vs. suspended). Moreover, suspended anoikis resistant TE-85 cells (TE-85ar) retained their sensitivity to chemotherapy as well. CONCLUSION: Acquisition of anoikis resistance in human osteosarcoma cells does not result in a generalized resistance to all apoptotic stimuli, including chemotherapy. Moreover, our results suggest that the pathways regulating anoikis resistance and chemotherapy resistance might involve the action of different mediators

    Control of InGaAs facets using metal modulation epitaxy (MME)

    Full text link
    Control of faceting during epitaxy is critical for nanoscale devices. This work identifies the origins of gaps and different facets during regrowth of InGaAs adjacent to patterned features. Molecular beam epitaxy (MBE) near SiO2 or SiNx led to gaps, roughness, or polycrystalline growth, but metal modulated epitaxy (MME) produced smooth and gap-free "rising tide" (001) growth filling up to the mask. The resulting self-aligned FETs were dominated by FET channel resistance rather than source-drain access resistance. Higher As fluxes led first to conformal growth, then pronounced {111} facets sloping up away from the mask.Comment: 18 pages, 7 figure

    A Laser System for the Spectroscopy of Highly-Charged Bismuth Ions

    Full text link
    We present and characterize a laser system for the spectroscopy on highly-charged ^209Bi^82+ ions at a wavelength of 243.87 nm. For absolute frequency stabilization, the laser system is locked to a near-infra-red laser stabilized to a rubidium transition line using a transfer cavity based locking scheme. Tuning of the output frequency with high precision is achieved via a tunable rf offset lock. A sample-and-hold technique gives an extended tuning range of several THz in the UV. This scheme is universally applicable to the stabilization of laser systems at wavelengths not directly accessible to atomic or molecular resonances. We determine the frequency accuracy of the laser system using Doppler-free absorption spectroscopy of Te_2 vapour at 488 nm. Scaled to the target wavelength of 244 nm, we achieve a frequency uncertainty of \sigma_{244nm} = 6.14 MHz (one standard deviation) over six days of operation.Comment: Contribution to the special issue on "Trapped Ions" in "Applied Physics B

    Distinction of disorder, classical and quantum vibrational contributions to atomic mean-square amplitudes in dielectric pentachloronitrobenzene

    Full text link
    The solid-state molecular disorder of pentachloronitrobenzene (PCNB) and its role in causing anomalous dielectric properties are investigated. Normal coordinate analysis (NCA) of atomic mean-square displacement parameters (ADPs) is employed to distinguish disorder contributions from classical and quantum-mechanical vibrational contributions. The analysis relies on multitemperature (5-295 K) single-crystal neutron-diffraction data. Vibrational frequencies extracted from the temperature dependence of the ADPs are in good agreement with THz spectroscopic data. Aspects of the static disorder revealed by this work, primarily tilting and displacement of the molecules, are compared with corresponding results from previous, much more in-depth and time-consuming Monte Carlo simulations; their salient findings are reproduced by this work, demonstrating that the faster NCA approach provides reliable constraints for the interpretation of diffuse scattering. The dielectric properties of PCNB can thus be rationalized by an interpretation of the temperature-dependent ADPs in terms of thermal motion and molecular disorder. The use of atomic displacement parameters in the NCA approach is nonetheless hostage to reliable neutron data. The success of this study demonstrates that state-of-the-art single-crystal Laue neutron diffraction affords sufficiently fast the accurate data for this type of study. In general terms, the validation of this work opens up the field for numerous studies of solid-state molecular disorder in organic materials.Comment: Now published in Physical Review
    corecore