262 research outputs found

    Lunar and Meteorite Sample Disk for Educators

    Get PDF
    NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites

    Solar System Samples for Research, Education, and Public Outreach

    Get PDF
    In the next two years, during the NASA Year of the Solar System, spacecraft from NASA and our international partners will; encounter a comet, orbit asteroid 4 Vesta, continue to explore Mars with rovers, and launch robotic explorers to the Moon and Mars. We have pieces of all these worlds in our laboratories, and their continued study provides incredibly valuable "ground truth" to complement space exploration missions. Extensive information about these unique materials, as well as actual lunar samples and meteorites, are available for display and education. The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach

    20 T dipoles and Bi-2212: the path to LHC energy upgrade

    Full text link
    Increasing the energy of the LHC would require a ring of \sim20 T magnets using the superconductors Nb3Sn and Bi-2212/Ag. The technology for Bi-2212/Ag wire, cable, and coil has advanced significantly but is still far short of the performance needed for such magnets. New technol-ogy for both wire and cable is under development, which if successful would yield the needed performance.Comment: 5 pages, contribution to the EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider, Malta, 14 -- 16 Oct 2010; CERN Yellow Report CERN-2011-003, pp. 70-7

    Engaging Students, Teachers, and the Public with NASA Astromaterials Research and Exploration Science (ARES) Assets

    Get PDF
    Engaging students, teachers, and the public with NASA Astromaterials Research and Exploration Science (ARES) assets, including Science, Technology, Engineering and Mathematics (STEM) experts and NASA curation astromaterial samples, provides an extraordinary opportunity to connect citizens with authentic aspects unique to our nation's space program. Effective engagement can occur through both virtual connections such as webcasts and in-person connections at educator workshops and public outreach events. Access to NASA ARES assets combined with adaptable resources and techniques that engage and promote scientific thinking helps translate the science and research being facilitated through NASA exploration, elicits a curiosity that aims to carry over even after a given engagement, and prepares our next generation of scientific explorers

    Rutherford cables with anisotropic transverse resistance

    Get PDF
    Putting a resistive core into the center of a Rutherford cable increases resistance between strands in the crossover direction, which greatly reduces the coupling currents, even when the resistance to adjacent turns remains small. This allows one to improve stability by soldering strands together or using porous metal, without incurring a penalty of increased coupling. We describe our manufacturing methods and an experimental measurement of coupling
    corecore