190 research outputs found

    Neural mechanisms of resistance to peer influence in early adolescence

    Get PDF
    During the shift from a parent-dependent child to a fully autonomous adult, peers take on a significant role in shaping the adolescent’s behaviour. Peer-derived influences are not always positive, however. Here we explore neural correlates of inter-individual differences in the probability of resisting peer influence in early adolescence. Using functional magnetic-resonance imaging (fMRI), we found striking differences between 10-year old children with high and low resistance to peer influence in their brain activity during observation of angry hand-movements and angry facial expressions: compared with subjects with low resistance to peer influence, individuals with high resistance showed a highly coordinated brain activity in neural systems underlying perception of action and decision making. These findings suggest that the probability of resisting peer influence depends on neural interactions during observation of emotion-laden actions

    Updated guidelines for gene nomenclature in wheat

    Get PDF
    The last decade has seen a proliferation in genomic resources for wheat, including reference- and pan-genome assemblies with gene annotations, which provide new opportunities to detect, characterise, and describe genes that influence traits of interest. The expansion of genetic information has supported growth of the wheat research community and catalysed strong interest in the genes that control agronomically important traits, such as yield, pathogen resistance, grain quality, and abiotic stress tolerance. To accommodate these developments, we present an updated set of guidelines for gene nomenclature in wheat. These guidelines can be used to describe loci identified based on morphological or phenotypic features or to name genes based on sequence information, such as similarity to genes characterised in other species or the biochemical properties of the encoded protein. The updated guidelines provide a flexible system that is not overly prescriptive but provides structure and a common framework for naming genes in wheat, which may be extended to related cereal species. We propose these guidelines be used henceforth by the wheat research community to facilitate integration of data from independent studies and allow broader and more efficient use of text and data mining approaches, which will ultimately help further accelerate wheat research and breeding.EEA PergaminoFil: Boden, S. A. University of Adelaide. Waite Research Institute. School of Agriculture, Food and Wine; AustraliaFil: McIntosh, R .A. University of Sydney. School of Life and Environmental Sciences. Plant Breeding Institute; AustraliaFil: Uauy, C. Norwich Research Park. John Innes Centre; Reino UnidoFil: Krattinger, S. G. King Abdullah University of Science and Technology. Biological and Environmental Science and Engineering Division. Plant Science Program; Arabia SauditaFil: Krattinger, S. G. The Wheat Initiative; AlemaniaFil: Dubcovsky, J. University of California. Department of Plant Science; Estados UnidosFil: Dubcovsky, J. The Wheat Initiative; AlemaniaFil: Rogers, W.J. Universidad Nacional del Centro de La Provincia de Buenos Aires. Facultad de Agronomía (CIISAS, CIC-BIOLAB AZUL, CONICET-INBIOTEC, CRESCA). Departamento de Biología Aplicada; ArgentinaFil: Rogers, W.J. The Wheat Initiative; AlemaniaFIL: Xia, X. C. Chinese Academy of Agricultural Sciences. National Wheat Improvement Centre. Institute of Crop Science; ChinaFil: Badaeva, E. D. Russian Academy of Sciences. N.I. Vavilov Institute of General Genetics; RusiaFil: Bentley, A. R. International Maize and Wheat Improvement Center (CIMMYT); MéxicoFil: Bentley, A. R. The Wheat Initiative; AlemaniaFil: Brown-Guedira, G. North Carolina State University. USDA-ARS Plant Science Research; Estados UnidosFil: Brown-Guedira, G. The Wheat Initiative; AlemaniaFil: González, Fernanda G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Sección Ecofisiología; ArgentinaFil: González, Fernanda G. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA-UNSADA); ArgentinaFil: González, Fernanda G. The Wheat Initiative; AlemaniaFil: Zhang, Y. Fudan University. School of Life Sciences. Institute of Plant Biology. Collaborative Innovation Center of Genetics and Development. State Key Laboratory of Genetic Engineering; Chin

    Verbal working memory and functional large-scale networks in schizophrenia

    Get PDF
    The aim of this study was to test whether bilinear and nonlinear effective connectivity (EC) measures of working memory fMRI data can differentiate between patients with schizophrenia (SZ) and healthy controls (HC). We applied bilinear and nonlinear Dynamic Causal Modeling (DCM) for the analysis of verbal working memory in 16 SZ and 21 HC. The connection strengths with nonlinear modulation between the dorsolateral prefrontal cortex (DLPFC) and the ventral tegmental area/substantia nigra (VTA/SN) were evaluated. We used Bayesian Model Selection at the group and family levels to compare the optimal bilinear and nonlinear models. Bayesian Model Averaging was used to assess the connection strengths with nonlinear modulation. The DCM analyses revealed that SZ and HC used different bilinear networks despite comparable behavioral performance. In addition, the connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area showed differences between SZ and HC. The adoption of different functional networks in SZ and HC indicated neurobiological alterations underlying working memory performance, including different connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area. These novel findings may increase our understanding of connectivity in working memory in schizophrenia

    Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms

    Full text link
    This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4e16 - 1e19 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4e16 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.Comment: 33 pages, 16 figures, 5 gif movies included: movies may be viewed at http://www-solar.mcs.st-and.ac.uk/~karen/movies_paper1

    Effects of a balanced translocation between chromosomes 1 and 11 disrupting the DISC1 locus on white matter integrity

    Get PDF
    Objective Individuals carrying rare, but biologically informative genetic variants provide a unique opportunity to model major mental illness and inform understanding of disease mechanisms. The rarity of such variations means that their study involves small group numbers, however they are amongst the strongest known genetic risk factors for major mental illness and are likely to have large neural effects. DISC1 (Disrupted in Schizophrenia 1) is a gene containing one such risk variant, identified in a single Scottish family through its disruption by a balanced translocation of chromosomes 1 and 11; t(1;11) (q42.1;q14.3). Method Within the original pedigree, we examined the effects of the t(1;11) translocation on white matter integrity, measured by fractional anisotropy (FA). This included family members with (n = 7) and without (n = 13) the translocation, along with a clinical control sample of patients with psychosis (n = 34), and a group of healthy controls (n = 33). Results We report decreased white matter integrity in five clusters in the genu of the corpus callosum, the right inferior fronto-occipital fasciculus, acoustic radiation and fornix. Analysis of the mixed psychosis group also demonstrated decreased white matter integrity in the above regions. FA values within the corpus callosum correlated significantly with positive psychotic symptom severity. Conclusions We demonstrate that the t(1;11) translocation is associated with reduced white matter integrity in frontal commissural and association fibre tracts. These findings overlap with those shown in affected patients with psychosis and in DISC1 animal models and highlight the value of rare but biologically informative mutations in modeling psychosis

    Signatures of the slow solar wind streams from active regions in the inner corona

    Full text link
    Some of local sources of the slow solar wind can be associated with spectroscopically detected plasma outflows at edges of active regions accompanied with specific signatures in the inner corona. The EUV telescopes (e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes observed extended ray-like structures seen at the limb above active regions in 1MK iron emission lines and described as "coronal rays". To verify the relationship between coronal rays and plasma outflows, we analyze an isolated active region (AR) adjacent to small coronal hole (CH) observed by different EUV instruments in the end of July - beginning of August 2009. On August 1 EIS revealed in the AR two compact outflows with the Doppler velocities V =10-30 km/s accompanied with fan loops diverging from their regions. At the limb the ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July 31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic field lines expanded to the streamer stalks. Using the DEM analysis, it was found that the fan loops diverged from the outflow regions had the dominant temperature of ~1 MK, which is similar to that of the outgoing plasma streams. Parameters of the solar wind measured by STEREO-B, ACE, WIND, STEREO-A were conformed with identification of the ARCH as a source region at the Wang-Sheeley-Arge map of derived coronal holes for CR 2086. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.Comment: Accepted for publication in Solar Physics; 31 Pages; 13 Figure

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    • …
    corecore