777 research outputs found

    An evidence-based definition of anemia for singleton, uncomplicated pregnancies

    Get PDF
    BACKGROUND: The definition for anemia in pregnancy is outdated, derived from Scandinavian studies in the 1970\u27s to 1980\u27s. To identity women at risk of blood transfusion, a common cause of Severe Maternal Morbidity, a standard definition of anemia in pregnancy in a modern, healthy United States cohort is needed. OBJECTIVE: To define anemia in pregnancy in a United States population including a large county vs. private hospital population using uncomplicated patients. MATERIALS AND METHODS: Inclusion criteria were healthy women with the first prenatal visit before 20 weeks. Exclusion criteria included preterm birth, preeclampsia, hypertension, diabetes, short interval pregnancy (\u3c18 months), multiple gestation, abruption, and fetal demise. All women had iron fortification (Ferrous sulfate 325 mg daily) recommended. The presentation to care and pre-delivery hematocrits were obtained, and the percentiles determined. A total of 2000 patients were included, 1000 from the public county hospital and 1000 from the private hospital. Each cohort had 250 patients in each 2011, 2013, 2015, and 2018. The cohorts were compared for differences in the fifth percentile for each antepartum epoch. Student\u27s t-test and chi-squared statistical tests were used for analysis, p-value of ≀0.05 was considered significant. RESULTS: In the public and private populations, 777 and 785 women presented in the first trimester while 223 and 215 presented in the second. The women at the private hospital were more likely to be older, Caucasian race, nulliparous, and present earlier to care. The fifth percentile was compared between the women in the private and public hospitals and were clinically indistinguishable. When combining the cohorts, the fifth percentile for hemoglobin/hematocrit was 11 g/dL/32.8% in the first trimester, 10.3 g/dL/30.6% in the second trimester, and 10.0 g/dL/30.2% pre-delivery. CONCLUSIONS: Fifth percentile determinations were made from a combined cohort of normal, uncomplicated pregnancies to define anemia in pregnancy. Comparison of two different cohorts confirms that the same definition for anemia is appropriate regardless of demographics or patient mix

    Black patients referred to a lung cancer screening program experience lower rates of screening and longer time to follow-up.

    Get PDF
    BACKGROUND: Racial disparities are well-documented in preventive cancer care, but they have not been fully explored in the context of lung cancer screening. We sought to explore racial differences in lung cancer screening outcomes within a lung cancer screening program (LCSP) at our urban academic medical center including differences in baseline low-dose computed tomography (LDCT) results, time to follow-up, adherence, as well as return to annual screening after additional imaging, loss to follow-up, and cancer diagnoses in patients with positive baseline scans. METHODS: A historical cohort study of patients referred to our LCSP was conducted to extract demographic and clinical characteristics, smoking history, and lung cancer screening outcomes. RESULTS: After referral to the LCSP, blacks had significantly lower odds of receiving LDCT compared to whites, even while controlling for individual lung cancer risk factors and neighborhood-level factors. Blacks also demonstrated a trend toward delayed follow-up, decreased adherence, and loss to follow-up across all Lung-RADS categories. CONCLUSIONS: Overall, lung cancer screening annual adherence rates were low, regardless of race, highlighting the need for increased patient education and outreach. Furthermore, the disparities in race we identified encourage further research with the purpose of creating culturally competent and inclusive LCSPs

    The acquisition of Sign Language: The impact of phonetic complexity on phonology

    Get PDF
    Research into the effect of phonetic complexity on phonological acquisition has a long history in spoken languages. This paper considers the effect of phonetics on phonological development in a signed language. We report on an experiment in which nonword-repetition methodology was adapted so as to examine in a systematic way how phonetic complexity in two phonological parameters of signed languages β€” handshape and movement β€” affects the perception and articulation of signs. Ninety-one Deaf children aged 3–11 acquiring British Sign Language (BSL) and 46 hearing nonsigners aged 6–11 repeated a set of 40 nonsense signs. For Deaf children, repetition accuracy improved with age, correlated with wider BSL abilities, and was lowest for signs that were phonetically complex. Repetition accuracy was correlated with fine motor skills for the youngest children. Despite their lower repetition accuracy, the hearing group were similarly affected by phonetic complexity, suggesting that common visual and motoric factors are at play when processing linguistic information in the visuo-gestural modality

    Coordination of opposing sex-specific and core muscle groups regulates male tail posture during Caenorhabditis elegans male mating behavior

    Get PDF
    Background To survive and reproduce, animals must be able to modify their motor behavior in response to changes in the environment. We studied a complex behavior of Caenorhabditis elegans, male mating behavior, which provided a model for understanding motor behaviors at the genetic, molecular as well as circuit level. C. elegans male mating behavior consists of a series of six sub-steps: response to contact, backing, turning, vulva location, spicule insertion, and sperm transfer. The male tail contains most of the sensory structures required for mating, in addition to the copulatory structures, and thus to carry out the steps of mating behavior, the male must keep his tail in contact with the hermaphrodite. However, because the hermaphrodite does not play an active role in mating and continues moving, the male must modify his tail posture to maintain contact. We provide a better understanding of the molecular and neuro-muscular pathways that regulate male tail posture during mating. Results Genetic and laser ablation analysis, in conjunction with behavioral assays were used to determine neurotransmitters, receptors, neurons and muscles required for the regulation of male tail posture. We showed that proper male tail posture is maintained by the coordinated activity of opposing muscle groups that curl the tail ventrally and dorsally. Specifically, acetylcholine regulates both ventral and dorsal curling of the male tail, partially through anthelmintic levamisole-sensitive, nicotinic receptor subunits. Male-specific muscles are required for acetylcholine-driven ventral curling of the male tail but dorsal curling requires the dorsal body wall muscles shared by males and hermaphrodites. Gamma-aminobutyric acid activity is required for both dorsal and ventral acetylcholine-induced curling of the male tail and an inhibitory gamma-aminobutyric acid receptor, UNC-49, prevents over-curling of the male tail during mating, suggesting that cross-inhibition of muscle groups helps maintain proper tail posture. Conclusion Our results demonstrated that coordination of opposing sex-specific and core muscle groups, through the activity of multiple neurotransmitters, is required for regulation of male tail posture during mating. We have provided a simple model for regulation of male tail posture that provides a foundation for studies of how genes, molecular pathways, and neural circuits contribute to sensory regulation of this motor behavior

    On the Surface Structure of Strange Superheavy Nuclei

    Full text link
    Bound, strange, neutral superheavy nuclei, stable against strong decay, may exist. A model effective field theory calculation of the surface energy and density of such systems is carried out assuming vector meson couplings to conserved currents and scalar couplings fit to data where it exists. The non-linear relativistic mean field equations are solved assuming local baryon sources. The approach is calibrated through a successful calculation of the known nuclear surface tension.Comment: 12 pages, 9 figure

    Optical Silencing of C. elegans Cells with Arch Proton Pump

    Get PDF
    BACKGROUND: Optogenetic techniques using light-driven ion channels or ion pumps for controlling excitable cells have greatly facilitated the investigation of nervous systems in vivo. A model organism, C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. METHODOLOGY/PRINCIPAL FINDINGS: We describe the application of archaerhodopsin-3 (Arch), a recently reported optical neuronal silencer, to C. elegans. Arch::GFP expressed either in all neurons or body wall muscles of the entire body by means of transgenes were localized, at least partially, to the cell membrane without adverse effects, and caused locomotory paralysis of worms when illuminated by green light (550 nm). Pan-neuronal expression of Arch endowed worms with quick and sustained responsiveness to such light. Worms reliably responded to repeated periods of illumination and non-illumination, and remained paralyzed under continuous illumination for 30 seconds. Worms expressing Arch in different subsets of motor neurons exhibited distinct defects in the locomotory behavior under green light: selective silencing of A-type motor neurons affected backward movement while silencing of B-type motor neurons affected forward movement more severely. Our experiments using a heat-shock-mediated induction system also indicate that Arch becomes fully functional only 12 hours after induction and remains functional for more than 24 hour. CONCLUSIONS/SGNIFICANCE: Arch can be used for silencing neurons and muscles, and may be a useful alternative to currently widely used halorhodopsin (NpHR) in optogenetic studies of C. elegans

    Mutant TDP-43 and FUS Cause Age-Dependent Paralysis and Neurodegeneration in C. elegans

    Get PDF
    Mutations in the DNA/RNA binding proteins TDP-43 and FUS are associated with Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Intracellular accumulations of wild type TDP-43 and FUS are observed in a growing number of late-onset diseases suggesting that TDP-43 and FUS proteinopathies may contribute to multiple neurodegenerative diseases. To better understand the mechanisms of TDP-43 and FUS toxicity we have created transgenic Caenorhabditis elegans strains that express full-length, untagged human TDP-43 and FUS in the worm's GABAergic motor neurons. Transgenic worms expressing mutant TDP-43 and FUS display adult-onset, age-dependent loss of motility, progressive paralysis and neuronal degeneration that is distinct from wild type alleles. Additionally, mutant TDP-43 and FUS proteins are highly insoluble while wild type proteins remain soluble suggesting that protein misfolding may contribute to toxicity. Populations of mutant TDP-43 and FUS transgenics grown on solid media become paralyzed over 7 to 12 days. We have developed a liquid culture assay where the paralysis phenotype evolves over several hours. We introduce C. elegans transgenics for mutant TDP-43 and FUS motor neuron toxicity that may be used for rapid genetic and pharmacological suppressor screening

    A Novel Sperm-Delivered Toxin Causes Late-Stage Embryo Lethality and Transmission Ratio Distortion in C. elegans

    Get PDF
    The evolutionary fate of an allele ordinarily depends on its contribution to host fitness. Occasionally, however, genetic elements arise that are able to gain a transmission advantage while simultaneously imposing a fitness cost on their hosts. We previously discovered one such element in C. elegans that gains a transmission advantage through a combination of paternal-effect killing and zygotic self-rescue. Here we demonstrate that this element is composed of a sperm-delivered toxin, peel-1, and an embryo-expressed antidote, zeel-1. peel-1 and zeel-1 are located adjacent to one another in the genome and co-occur in an insertion/deletion polymorphism. peel-1 encodes a novel four-pass transmembrane protein that is expressed in sperm and delivered to the embryo via specialized, sperm-specific vesicles. In the absence of zeel-1, sperm-delivered PEEL-1 causes lethal defects in muscle and epidermal tissue at the 2-fold stage of embryogenesis. zeel-1 is expressed transiently in the embryo and encodes a novel six-pass transmembrane domain fused to a domain with sequence similarity to zyg-11, a substrate-recognition subunit of an E3 ubiquitin ligase. zeel-1 appears to have arisen recently, during an expansion of the zyg-11 family, and the transmembrane domain of zeel-1 is required and partially sufficient for antidote activity. Although PEEL-1 and ZEEL-1 normally function in embryos, these proteins can act at other stages as well. When expressed ectopically in adults, PEEL-1 kills a variety of cell types, and ectopic expression of ZEEL-1 rescues these effects. Our results demonstrate that the tight physical linkage between two novel transmembrane proteins has facilitated their co-evolution into an element capable of promoting its own transmission to the detriment of organisms carrying it

    Mesoscopic organization reveals the constraints governing C. elegans nervous system

    Get PDF
    One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations, such as optimizing for resource constraints (viz., total wiring cost) and communication efficiency (i.e., network path length). Comparison with other complex networks designed for efficient transport (of signals or resources) implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis, we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including its key functional role as a processor of information.Comment: Published version, Minor modifications, 16 pages, 9 figure
    • …
    corecore