18 research outputs found
The genera Melanothamnus Bornet & Falkenberg and Vertebrata S.F. Gray constitute well-defined clades of the red algal tribe Polysiphonieae (Rhodomelaceae, Ceramiales).
Polysiphonia is the largest genus of red algae, and several schemes subdividing it into smaller taxa have been proposed since its original description. Most of these proposals were not generally accepted, and currently the tribe Polysiphonieae consists of the large genus Polysiphonia (190 species), the segregate genus Neosiphonia (43 species), and 13 smaller genera (< 10 species each). In this paper, phylogenetic relationships of the tribe Polysiphonieae are analysed, with particular emphasis on the genera Carradoriella, Fernandosiphonia, Melanothamnus, Neosiphonia, Polysiphonia sensu stricto, Streblocladia and Vertebrata. We evaluated the consistency of 14 selected morphological characters in the identified clades. Based on molecular phylogenetic (rbcL and 18S genes) and morphological evidence, two speciose genera are recognized: Vertebrata (including the type species of the genera Ctenosiphonia, Enelittosiphonia, Boergeseniella and Brongniartella) and Melanothamnus (including the type species of the genera Fernandosiphonia and Neosiphonia). Both genera are distinguished from other members of the Polysiphonieae by synapomorphic characters, the emergence of which could have provided evolutionarily selective advantages for these two lineages. In Vertebrata trichoblast cells are multinucleate, possibly associated with the development of extraordinarily long, photoprotective, trichoblasts. Melanothamnus has 3-celled carpogonial branches and plastids lying exclusively on radial walls of the pericentral cells, which similarly may improve resistance to damage caused by excessive light. Other relevant characters that are constant in each genus are also shared with other clades. The evolutionary origin of the genera Melanothamnus and Vertebrata is estimated as 75.7-95.78 and 90.7-138.66 Ma, respectively. Despite arising in the Cretaceous, before the closure of the Tethys Seaway, Melanothamnus is a predominantly Indo-Pacific genus and its near-absence from the northeastern Atlantic is enigmatic. The nomenclatural implications of this work are that 46 species are here transferred to Melanothamnus, six species are transferred to Vertebrata and 13 names are resurrected for Vertebrata
Quantifying production-environment tradeoffs for grazing land management -- A case example from the Australian rangelands
Contemporary management of Australian rangeland grazing enterprises is characterised by concurrent processes of a continuing intensification of land management practices and simplification of landscape ecological processes. This dual characteristic is associated with increasing levels of potential conflict between land management practices that promote improved economic performance of these enterprises at the apparent expense of the ecological health of the landscape; and vice versa. A framework is described for assisting private range managers to make an assessment of prospective production and environmental tradeoffs for a range of rangeland management practices. Two examples of the application of the framework are presented - tree clearing and riparian fencing - both using case studies of rangeland livestock enterprises that are located in two regions of the northern Australian rangelands.
Wet season resting - economic insights from scenario modelling
Pasture degradation, particularly that attributable to overgrazing, is a significant problem across the northern Australian rangelands. Although grazing studies have identified the scope for wet season resting strategies to be used to rehabilitate degraded pastures, the economic outcome of these strategies has not been extensively demonstrated. An exploratory study of the prospective economic value of wet season resting is presented using an economic simulation model of a 28000 ha beef enterprise located in the Charters Towers region of north-eastern Australia to explore seven hypothetical scenarios centred on the projected performance of a wet season resting strategy. A series of 20-year simulations for a range of pasture recovery profiles, stocking capacity, animal productivity responses, beef prices and agistment options are compared with a baseline scenario of taking no action. Estimates of the net present value of the 20-year difference in total enterprise gross margins between the various resting options and the 'do nothing' option identify that wet season resting can offer a positive economic return for the range of scenarios examined, although this is contingent on the assumptions that are made concerning the trajectories of change in carrying capacity and animal productivity. Some implications for management and policy making to support the practical implementation of wet season resting strategies are discussed
Wet season resting - economic insights from scenario modelling
Pasture degradation, particularly that attributable to overgrazing, is a significant problem across the northern Australian rangelands. Although grazing studies have identified the scope for wet season resting strategies to be used to rehabilitate degraded pastures, the economic outcome of these strategies has not been extensively demonstrated. An exploratory study of the prospective economic value of wet season resting is presented using an economic simulation model of a 28000 ha beef enterprise located in the Charters Towers region of north-eastern Australia to explore seven hypothetical scenarios centred on the projected performance of a wet season resting strategy. A series of 20-year simulations for a range of pasture recovery profiles, stocking capacity, animal productivity responses, beef prices and agistment options are compared with a baseline scenario of taking no action. Estimates of the net present value of the 20-year difference in total enterprise gross margins between the various resting options and the 'do nothing' option identify that wet season resting can offer a positive economic return for the range of scenarios examined, although this is contingent on the assumptions that are made concerning the trajectories of change in carrying capacity and animal productivity. Some implications for management and policy making to support the practical implementation of wet season resting strategies are discussed