3,533 research outputs found
Variable mixer propulsion cycle
A design technique, method and apparatus are delineated for controlling the bypass gas stream pressure and varying the bypass ratio of a mixed flow gas turbine engine in order to achieve improved performance. The disclosed embodiments each include a mixing device for combining the core and bypass gas streams. The variable area mixing device permits the static pressures of the core and bypass streams to be balanced prior to mixing at widely varying bypass stream pressure levels. The mixed flow gas turbine engine therefore operates efficiently over a wide range of bypass ratios and the dynamic pressure of the bypass stream is maintained at a level which will keep the engine inlet airflow matched to an optimum design level throughout a wide range of engine thrust settings
Reduction of Ion Heating During Magnetic Reconnection by Large-Scale Effective Potentials
The physical processes that control the partition of released magnetic energy
between electrons and ions during reconnection is explored through
particle-in-cell simulations and analytical techniques. We demonstrate that the
development of a large-scale parallel electric field and its associated
potential controls the relative heating of electrons and ions. The potential
develops to restrain heated exhaust electrons and enhances their heating by
confining electrons in the region where magnetic energy is released.
Simultaneously the potential slows ions entering the exhaust below the
Alfv\'enic speed expected from the traditional counterstreaming picture of ion
heating. Unexpectedly, the magnitude of the potential and therefore the
relative partition of energy between electrons and ions is not a constant but
rather depends on the upstream parameters and specifically the upstream
electron normalized temperature (electron beta). These findings suggest that
the fraction of magnetic energy converted into the total thermal energy may be
independent of upstream parameters
A study of blood contamination of Siqveland matrix bands
AIMS To use a sensitive forensic test to measure blood contamination of used Siqveland matrix bands following routine cleaning and sterilisation procedures in general dental practice. MATERIALS AND METHODS: Sixteen general dental practices in the West of Scotland participated. Details of instrument cleaning procedures were recorded for each practice. A total of 133 Siqveland matrix bands were recovered following cleaning and sterilisation and were examined for residual blood contamination by the Kastle-Meyer test, a well-recognised forensic technique. RESULTS: Ultrasonic baths were used for the cleaning of 62 (47%) bands and retainers and the remainder (53%) were hand scrubbed prior to autoclaving. Overall, 21% of the matrix bands and 19% of the retainers gave a positive Kastle-Meyer test, indicative of residual blood contamination, following cleaning and sterilisation. In relation to cleaning method, 34% of hand-scrubbed bands and 32% of hand-scrubbed retainers were positive for residual blood by the Kastle-Meyer test compared with 6% and 3% respectively of ultrasonically cleaned bands and retainers (P less than 0.001). CONCLUSIONS: If Siqveland matrix bands are re-processed in the assembled state, then adequate pre-sterilisation cleaning cannot be achieved reliably. Ultrasonic baths are significantly more effective than hand cleaning for these items of equipment
Optimal combination of signals from co-located gravitational wave interferometers for use in searches for a stochastic background
This article derives an optimal (i.e., unbiased, minimum variance) estimator
for the pseudo-detector strain for a pair of co-located gravitational wave
interferometers (such as the pair of LIGO interferometers at its Hanford
Observatory), allowing for possible instrumental correlations between the two
detectors. The technique is robust and does not involve any assumptions or
approximations regarding the relative strength of gravitational wave signals in
the detector pair with respect to other sources of correlated instrumental or
environmental noise. An expression is given for the effective power spectral
density of the combined noise in the pseudo-detector. This can then be
introduced into the standard optimal Wiener filter used to cross-correlate
detector data streams in order to obtain an optimal estimate of the stochastic
gravitational wave background. In addition, a dual to the optimal estimate of
strain is derived. This dual is constructed to contain no gravitational wave
signature and can thus be used as on "off-source" measurement to test
algorithms used in the "on-source" observation.Comment: 14 pages, 4 figures, submitted to Physical Review D Resubmitted after
editing paper in response to referee comments. Removed appendices A, B and
edited text accordingly. Improved legibility of figures. Corrected several
references. Corrected reference to science run number (S1 vs. S2) in text and
figure caption
Segment-based spatial analysis for assessing road infrastructure performance using monitoring observations and remote sensing data
Road infrastructure is important to the well-being and economic health of all nations. The performance of road pavement infrastructure is sophisticated and affected by numerous factors and varies greatly across different roads. Large scale spatial analysis for assessing road infrastructure performance is increasingly required for road management, therefore multi-source factors, including satellite remotely sensed climate and environmental data, and ground-monitored vehicles observations, are collected as explanatory variables. Different from the traditional point or area based geospatial attributes, the performance of pavement infrastructure is the line segment based spatial data. Thus, a segment-based spatial stratified heterogeneitymethod is utilized to explore the comprehensive impacts of vehicles, climate, properties of road and socioeconomic conditions on pavement infrastructure performance. Segment-based optimal discretization is applied on discretizing segment-based pavement data, and a segment-based geographical detector is utilized to assess the spatial impacts of variables and their interactions. Results show that the segment-based methods can more reasonably and accurately describe the characteristics of line segment based spatial data and assess the spatial associations. The two major categories of factors associated with pavement damage are the variables of traffic vehicles and heavy vehicles in particular, and climate and environmental conditions. Meanwhile, the interactions between the explanatory variables in these two categories have much more influence than the single explanatory variables, and the interactions can explain more than half of the pavement damage. This study highlights the great potential of remote sensing based large scale spatial analysis of road infrastructures. The approach in this study provides new ideas for spatial analysis for segmented geographical data. The findings indicate that the quantified comprehensive impacts of variables are practical for wise decision-making for road design, construction and maintenance
A Role for Dorsal and Ventral Hippocampus in Inter-Temporal Choice Cost-Benefit Decision Making
Previous studies suggest a preferential role for dorsal hippocampus (dHPC) in spatial memory tasks, whereas ventral hippocampus (vHPC) has been implicated in aspects of fear and/or anxiety. In this study, we tested the hypothesis that vHPC may be a critical subregion for performance on a delay-based, cost-benefit decision making task. Rats chose between the two goal arms of a T maze, one containing an immediately available small reward, the other containing a larger reward that was only accessible after a delay. dHPC, vHPC, and complete hippocampal (cHPC) lesions all reduced choice of the delayed high reward (HR) in favor of the immediately available low reward (LR). The deficits were not due to a complete inability to remember which reward size was associated with which arm of the maze. When an equivalent 10-s delay was introduced in both goal arms, all rats chose the HR arm on nearly all trials. The deficit was, however, reinstated when the inequality was reintroduced. Our results suggest an important role for both dHPC and vHPC in the extended neural circuitry that underlies intertemporal choice
- …