1,951 research outputs found

    Enforcement and spectrum sharing: A case study of the 1695-1710 MHz band

    Get PDF
    Spectrum sharing is a new reality for spectrum users. Implementing sharing regimes on a non-opportunistic basis means that sharing agreements must be implemented. To have meaning, those agreements must be enforceable. We make this discussion more concrete by reasoning about enforcement in a particular spectrum band (1695-1710 MHz) that is currently being proposed for sharing between commercial services (LTE) and an incumbent spectrum user in the US. We examine three enforcement approaches, exclusion zones, protection zones and pure ex post and consider their implications in terms of cost elements, opportunity cost, and their adaptability. © 2013 ICST - The Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

    Indigenous Aeta MagbukĂșn self-identity, social-political structures, and self-determination at the local level in the Philippines

    Get PDF
    The Indigenous Aeta MagbukĂșn maintain a primarily nomadic hunter-gatherer lifestyle in their forested ancestral lands. Through the continued encroachment of non-Indigenous populations, the Aeta MagbukĂșn persist at a critical level. Finding it increasingly difficult to sustain their traditional livelihoods, they must engage in informal commerce to procure sufficient food throughout the year. This work explores the basis of self-identity, traditional kinship ties, evolution of sociopolitical organisation, and the developing political options that sustain the small and vulnerable Indigenous population. Despite recent tentative sociopolitical developments, securing cultural protection requires greater effort in developing political communication and representation at a local and national level. In doing so, the Aeta MagbukĂșn can meet their basic needs, secure traditional cultural knowledge, and are able to influence their own development during a time of relatively rapid acculturation within the mainstream Philippine societal complex

    Sagittal Subtalar and Talocrural Joint Assessment During Ambulation With Controlled Ankle Movement (CAM) Boots

    Get PDF
    Background: The purpose of the current study was to determine sagittal plane talocrural and subtalar kinematic differences between barefoot and controlled ankle movement (CAM) boot walking. This study used fluoroscopic images to determine talar motion relative to tibia and calcaneal motion relative to talus. Methods: Fourteen male subjects (mean age 24.1 ± 3.5 years) screened for normal gait were tested. A fluoroscopy unit was used to collect images at 200 Hz during stance. Sagittal motion of the talocrural and subtalar joints were analyzed barefoot and within short and tall CAM boots. Results: Barefoot talocrural mean maximum plantar and dorsiflexion were 9.2 ± 5.4 degrees and −7.5 ± 7.4 degrees, respectively; short CAM boot mean maximum plantar and dorsiflexion were 3.2 ± 4.0 degrees and −4.8 ± 10.2 degrees, respectively; and tall CAM boot mean maximum plantar and dorsiflexion were −0.2 ± 3.5 degrees and −2.4 ± 5.1 degrees, respectively. Talocrural mean range of motion (ROM) decreased from barefoot (16.7 ± 5.1 degrees) to short CAM boot (8.0 ± 4.9 degrees) to tall CAM boot (2.2 ± 2.5 degrees). Subtalar mean maximum plantarflexion angles were 5.3 ± 5.6 degrees for barefoot walking, 4.1 ± 5.9 degrees for short CAM boot walking, and 3.0 ± 4.7 degrees for tall CAM boot walking. Mean minimum subtalar plantarflexion angles were 0.7 ± 3.2 degrees for barefoot walking, 0.7 ± 2.9 degrees for short CAM boot walking, and 0.1 ± 4.8 degrees for tall CAM boot walking. Subtalar mean ROM decreased from barefoot (4.6 ± 3.9 degrees) to short CAM boot (3.4 ± 3.8 degrees) to tall CAM boot (2.9 ± 2.6 degrees). Conclusion: Tall and short CAM boot intervention was shown to limit both talocrural and subtalar motion in the sagittal plane during ambulation. The greatest reductions were seen with the tall CAM boot, which limited talocrural motion by 86.8% and subtalar motion by 37.0% compared to barefoot. Short CAM boot intervention reduced talocrural motion by 52.1% and subtalar motion by 26.1% compared to barefoot. Clinical Relevance: Both short and tall CAM boots reduced talocrural and subtalar motion during gait. The short CAM boot was more convenient to use, whereas the tall CAM boot more effectively reduced motion. In treatments requiring greater immobilization of the talocrural and subtalar joints, the tall CAM boot should be considered

    Multiple C-Terminal Tails within a Single \u3cem\u3eE. coli\u3c/em\u3e SSB Homotetramer Coordinate DNA Replication and Repair

    Get PDF
    Escherichia coli single-stranded DNA binding protein (SSB) plays essential roles in DNA replication, recombination and repair. SSB functions as a homotetramer with each subunit possessing a DNA binding domain (OB-fold) and an intrinsically disordered C-terminus, of which the last nine amino acids provide the site for interaction with at least a dozen other proteins that function in DNA metabolism. To examine how many C-termini are needed for SSB function, we engineered covalently linked forms of SSB that possess only one or two C-termini within a four-OB-fold “tetramer”. Whereas E. coli expressing SSB with only two tails can survive, expression of a single-tailed SSB is dominant lethal. E. coli expressing only the two-tailed SSB recovers faster from exposure to DNA damaging agents but accumulates more mutations. A single-tailed SSB shows defects in coupled leading and lagging strand DNA replication and does not support replication restart in vitro. These deficiencies in vitro provide a plausible explanation for the lethality observed in vivo. These results indicate that a single SSB tetramer must interact simultaneously with multiple protein partners during some essential roles in genome maintenance

    The Effects Of Medicare Payment Changes On Nursing Home Staffing

    Get PDF
    In light of persistent shortcomings in nursing home care quality and evidence that lower nurse staffing levels could be harmful to residents, we examine whether staffing levels are affected by changes in Medicare reimbursement rates. We exploit a 2006 change in Medicare’s methodology for adjusting provider payments for geographic differences in costs, a change that generated plausibly exogenous variation in nursing facility reimbursement rates. Our method compares facilities with higher and lower shares of Medicare resident days, which were differentially exposed to the payment changes we examine. Using panel data on US nursing homes from 2003 through 2009, we find that higher Medicare payments increased nurse staffing hours per resident day. Additional results suggest that changes in Medicare payments did not affect other measures of quality

    Experimental study of ceramic coated tip seals for turbojet engines

    Get PDF
    Ceramic gas-path seals were fabricated and successfully operated over 1000 cycles from flight idle to maximum power in a small turboshaft engine. The seals were fabricated by plasma spraying zirconia over a NiCoCrAlX bond boat on the Haynes 25 substrate. Coolant-side substrate temperatures and related engine parameters were recorded. Post-test inspection revealed mudflat surface cracking with penetration to the ceramic bond-coat interface

    COLD-SAT feasibility study safety analysis

    Get PDF
    The Cryogenic On-orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite presents some unique safety issues. The feasibility study conducted at NASA-Lewis desired a systems safety program that would be involved from the initial design in order to eliminate and/or control the inherent hazards. Because of this, a hazards analysis method was needed that: (1) identified issues that needed to be addressed for a feasibility assessment; and (2) identified all potential hazards that would need to be controlled and/or eliminated during the detailed design phases. The developed analysis method is presented as well as the results generated for the COLD-SAT system

    Tropical Crops and Resilience to Climate Change

    Get PDF
    It is anticipated that agricultural output will have to increase by 70% to feed a global population of more than 9 billion by the year 2050 (Benkeblia 2012). The capacity of global high-intensity farming systems to continue to guarantee productive returns while maintaining system stability will eventually decline, and thus new opportunities for agriculture are being realized in tropical environments. As population growth is greatest in tropical regions, and commensurate with rapid industrialization and change in traditional land use practices, it is presumed that equatorial production systems will be some of the most vulnerable to climate change

    Magnetic flux jumps in textured Bi2Sr2CaCu2O(8+d)

    Full text link
    Magnetic flux jumps in textured Bi2Sr2CaCu2O(8+d) have been studied by means of magnetization measurements in the temperature range between 1.95 K and Tc, in an external magnetic field up to 9 T. Flux jumps were found in the temperature range 1.95 K - 6 K, with the external magnetic field parallel to the c axis of the investigated sample. The effect of sample history on magnetic flux jumping was studied and it was found to be well accounted for by the available theoretical models. The magnetic field sweep rate strongly influences the flux jumping and this effect was interpreted in terms of the influence of both flux creep and the thermal environment of the sample. Strong flux creep was found in the temperature and magnetic field range where flux jumps occur suggesting a relationship between the two. The heat exchange conditions between the sample and the experimental environment also influence the flux jumping behavior. Both these effects stabilize the sample against flux instabilities, and this stabilizing effect increases with decreasing magnetic field sweep rate. Demagnetizing effects are also shown to have a significant influence on flux jumping.Comment: 10 pages, 6 figures, RevTeX4, submitted to Phys. Rev.

    Development and Implementation of a Remote- Sensing and In-situ Data Assimilating Version of CMAQ for Operational PM\u3csub\u3e2.5\u3c/sub\u3e Forecasting Part 1: MODIS Aerosol Optical Depth (AOD) Data- Assimilation Design and Testing

    Get PDF
    Air quality forecasts are now routinely used to understand when air pollution may reach unhealthy levels. For the first time, an operational air quality forecast model that includes the assimilation of remotely-sensed aerosol optical depth and ground based PM2.5 observations is being used. The assimilation enables quantifiable improvements in model forecast skill, which improves confidence in the accuracy of the officially-issued forecasts. This helps air quality stakeholders be more effective in taking mitigating actions (reducing power consumption, ridesharing, etc.) and avoiding exposures that could otherwise result in more serious air quality episodes or more deleterious health effects
    • 

    corecore