5 research outputs found

    The In-Orbit Performance of Four Microsat Spacecraft

    Get PDF
    On January 22, 1990, Ariane V-35 placed four Microsat spacecraft into orbit. The orbit achieved is nearly perfectly sun synchronous at 800 km altitude. The satellites, cubic structures measuring only 23 cm per side, were developed by the Radio Amateur Satellite Corporation of North America (AMSAT-NA). The time required to complete the project, from conception to delivery of the four satellites to Kourou, was exactly two years. Each satellite in orbit has a different mission and is performing in accordance with its intended design, although additional software is still being written to enhance the operating characteristics for each mission. This paper reviews the design objectives of the four spacecraft and summarizes their in-orbit performance against these prelaunch technical objectives. The level of technology employed by the Microsat spacecraft is briefly discussed and the software approach taken in implementing a real-time, multitasking operating system is summarized. The paper reviews the AMSAT experience as the first payload user group of the Ariane ASAP structure. Some of the findings regarding the current technology and how it may be expanded to fulfill other mission needs has been touched upon

    Heliophysics and Amateur Radio:Citizen Science Collaborations for Atmospheric, Ionospheric, and Space Physics Research and Operations

    Get PDF
    The amateur radio community is a global, highly engaged, and technical community with an intense interest in space weather, its underlying physics, and how it impacts radio communications. The large-scale observational capabilities of distributed instrumentation fielded by amateur radio operators and radio science enthusiasts offers a tremendous opportunity to advance the fields of heliophysics, radio science, and space weather. Well-established amateur radio networks like the RBN, WSPRNet, and PSKReporter already provide rich, ever-growing, long-term data of bottomside ionospheric observations. Up-and-coming purpose-built citizen science networks, and their associated novel instruments, offer opportunities for citizen scientists, professional researchers, and industry to field networks for specific science questions and operational needs. Here, we discuss the scientific and technical capabilities of the global amateur radio community, review methods of collaboration between the amateur radio and professional scientific community, and review recent peer-reviewed studies that have made use of amateur radio data and methods. Finally, we present recommendations submitted to the U.S. National Academy of Science Decadal Survey for Solar and Space Physics (Heliophysics) 2024–2033 for using amateur radio to further advance heliophysics and for fostering deeper collaborations between the professional science and amateur radio communities. Technical recommendations include increasing support for distributed instrumentation fielded by amateur radio operators and citizen scientists, developing novel transmissions of RF signals that can be used in citizen science experiments, developing new amateur radio modes that simultaneously allow for communications and ionospheric sounding, and formally incorporating the amateur radio community and its observational assets into the Space Weather R2O2R framework. Collaborative recommendations include allocating resources for amateur radio citizen science research projects and activities, developing amateur radio research and educational activities in collaboration with leading organizations within the amateur radio community, facilitating communication and collegiality between professional researchers and amateurs, ensuring that proposed projects are of a mutual benefit to both the professional research and amateur radio communities, and working towards diverse, equitable, and inclusive communities

    GNU Radio

    No full text
    GNU Radio is a free & open-source software development toolkit that provides signal processing blocks to implement software radios. It can be used with readily-available, low-cost external RF hardware to create software-defined radios, or without hardware in a simulation-like environment. It is widely used in hobbyist, academic, and commercial environments to support both wireless communications research and real-world radio systems
    corecore