300 research outputs found

    Using twins to better understand sibling relationships

    Get PDF
    We compared the nature of the sibling relationship in dyads of varying genetic relatedness, employing a behavioural genetic design to estimate the contribution that genes and the environment have on this familial bond. Two samples were used—the Sisters and Brothers Study consisted of 173 families with two target non-twin children (mean ages = 7.42 and 5.22 years respectively); and the Twins, Family and Behaviour study included 234 families with two target twin children (mean age = 4.70 years). Mothers and fathers reported on their children’s relationship with each other, via a postal questionnaire (the Sisters and Brothers Study) or a telephone interview (the Twins, Family and Behaviour study). Contrary to expectations, no mean level differences emerged when monozygotic twin pairs, dizygotic twin pairs, and non-twin pairs were compared on their sibling relationship quality. Behavioural genetic analyses also revealed that the sibling bond was modestly to moderately influenced by the genetic propensities of the children within the dyad, and moderately to substantially influenced by the shared environment common to both siblings. In addition, for sibling negativity, we found evidence of twin-specific environmental influence—dizygotic twins showed more reciprocity than did non-twins. Our findings have repercussions for the broader application of results from future twin-based investigations

    When Flexibility Is Stable: Implicit Long-Term Shaping of Olfactory Preferences

    Get PDF
    Preferences are traditionally assumed to be stable. However, empirical evidence such as preference modulation following choices calls this assumption into question. The evolution of such postchoice preference over long time spans, even when choices have been explicitly forgotten, has so far not been studied. In two experiments, we investigated this question by using a variant of the free choice paradigm: In a first session, participants evaluated the pleasantness of a number of odors. We then formed pairs of similarly rated odors, and asked participants to choose their favorite, for each pair. Participants were then presented with all odors again, and asked for another pleasantness rating. In a second session 1 week later, a third pleasantness rating was obtained, and participants were again asked to choose between the same options. Results suggested postchoice preference modulation immediately and 1 week after choice for both chosen and rejected options, even when choices were not explicitly remembered. A third experiment, using another paradigm, confirmed that choice can have a modulatory impact on preferences, and that this modulation can be long-lasting. Taken together, these findings suggest that although preferences appear to be flexible because they are modulated by choices, this modulation also appears to be stable over time and even without explicit recollection of the choice. These results bring a new argument to the idea that postchoice preference modulation could rely on implicit mechanisms, and are consistent with the recent proposal that cognitive dissonance reduction could to some extent be implicit

    Identification of a Mutation Associated with Fatal Foal Immunodeficiency Syndrome in the Fell and Dales Pony

    Get PDF
    The Fell and Dales are rare native UK pony breeds at risk due to falling numbers, in-breeding, and inherited disease. Specifically, the lethal Mendelian recessive disease Foal Immunodeficiency Syndrome (FIS), which manifests as B-lymphocyte immunodeficiency and progressive anemia, is a substantial threat. A significant percentage (∼10%) of the Fell ponies born each year dies from FIS, compromising the long-term survival of this breed. Moreover, the likely spread of FIS into other breeds is of major concern. Indeed, FIS was identified in the Dales pony, a related breed, during the course of this work. Using a stepwise approach comprising linkage and homozygosity mapping followed by haplotype analysis, we mapped the mutation using 14 FIS–affected, 17 obligate carriers, and 10 adults of unknown carrier status to a ∼1 Mb region (29.8 – 30.8 Mb) on chromosome (ECA) 26. A subsequent genome-wide association study identified two SNPs on ECA26 that showed genome-wide significance after Bonferroni correction for multiple testing: BIEC2-692674 at 29.804 Mb and BIEC2-693138 at 32.19 Mb. The associated region spanned 2.6 Mb from ∼29.6 Mb to 32.2 Mb on ECA26. Re-sequencing of this region identified a mutation in the sodium/myo-inositol cotransporter gene (SLC5A3); this causes a P446L substitution in the protein. This gene plays a crucial role in the regulatory response to osmotic stress that is essential in many tissues including lymphoid tissues and during early embryonic development. We propose that the amino acid substitution we identify here alters the function of SLC5A3, leading to erythropoiesis failure and compromise of the immune system. FIS is of significant biological interest as it is unique and is caused by a gene not previously associated with a mammalian disease. Having identified the associated gene, we are now able to eradicate FIS from equine populations by informed selective breeding

    Mifepristone prevents repopulation of ovarian cancer cells escaping cisplatin-paclitaxel therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced ovarian cancer is treated with cytoreductive surgery and combination platinum- and taxane-based chemotherapy. Although most patients have acute clinical response to this strategy, the disease ultimately recurs. In this work we questioned whether the synthetic steroid mifepristone, which as monotherapy inhibits the growth of ovarian cancer cells, is capable of preventing repopulation of ovarian cancer cells if given after a round of lethal cisplatin-paclitaxel combination treatment.</p> <p>Methods</p> <p>We established an <it>in vitro</it> approach wherein ovarian cancer cells with various sensitivities to cisplatin or paclitaxel were exposed to a round of lethal doses of cisplatin for 1 h plus paclitaxel for 3 h. Thereafter, cells were maintained in media with or without mifepristone, and short- and long-term cytotoxicity was assessed.</p> <p>Results</p> <p>Four days after treatment the lethality of cisplatin-paclitaxel was evidenced by reduced number of cells, increased hypodiploid DNA content, morphological features of apoptosis, DNA fragmentation, and cleavage of caspase-3, and of its downstream substrate PARP. Short-term presence of mifepristone either enhanced or did not modify such acute lethality. Seven days after receiving cisplatin-paclitaxel, cultures showed signs of relapse with escaping colonies that repopulated the plate in a time-dependent manner. Conversely, cultures exposed to cisplatin-paclitaxel followed by mifepristone not only did not display signs of repopulation following initial chemotherapy, but they also had their clonogenic capacity drastically reduced when compared to cells repopulating after cisplatin-paclitaxel.</p> <p>Conclusions</p> <p>Cytostatic concentrations of mifepristone after exposure to lethal doses of cisplatin and paclitaxel in combination blocks repopulation of remnant cells surviving and escaping the cytotoxic drugs.</p

    IgA in the horse: cloning of equine polymeric Ig receptor and J chain and characterization of recombinant forms of equine IgA

    Get PDF
    As in other mammals, immunoglobulin A (IgA) in the horse has a key role in immune defense. To better dissect equine IgA function, we isolated complementary DNA (cDNA) clones for equine J chain and polymeric Ig receptor (pIgR). When coexpressed with equine IgA, equine J chain promoted efficient IgA polymerization. A truncated version of equine pIgR, equivalent to secretory component, bound with nanomolar affinity to recombinant equine and human dimeric IgA but not with monomeric IgA from either species. Searches of the equine genome localized equine J chain and pIgR to chromosomes 3 and 5, respectively, with J chain and pIgR coding sequence distributed across 4 and 11 exons, respectively. Comparisons of transcriptional regulatory sequences suggest that horse and human pIgR expression is controlled through common regulatory mechanisms that are less conserved in rodents. These studies pave the way for full dissection of equine IgA function and open up possibilities for immune-based treatment of equine diseases

    Protocol of a Randomized Controlled Trial of Culturally Sensitive Interventions to Improve African Americans' and Non-African Americans' Early, Shared, and Informed Consideration of Live Kidney Transplantation: The talking about Live Kidney Donation (TALK) study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Live kidney transplantation (LKT) is underutilized, particularly among ethnic/racial minorities. The effectiveness of culturally sensitive educational and behavioral interventions to encourage patients' early, shared (with family and health care providers) and informed consideration of LKT and ameliorate disparities in consideration of LKT is unknown.</p> <p>Methods/Design</p> <p>We report the protocol of the Talking About Live Kidney Donation (TALK) Study, a two-phase study utilizing qualitative and quantitative research methods to design and test culturally sensitive interventions to improve patients' shared and informed consideration of LKT. Study Phase 1 involved the evidence-based development of culturally sensitive written and audiovisual educational materials as well as a social worker intervention to encourage patients' engagement in shared and informed consideration of LKT. In Study Phase 2, we are currently conducting a randomized controlled trial in which participants with progressing chronic kidney disease receive: 1) usual care by their nephrologists, 2) usual care plus the educational materials, or 3) usual care plus the educational materials and the social worker intervention. The primary outcome of the randomized controlled trial will include patients' self-reported rates of consideration of LKT (including family discussions of LKT, patient-physician discussions of LKT, and identification of an LKT donor). We will also assess differences in rates of consideration of LKT among African Americans and non-African Americans.</p> <p>Discussion</p> <p>The TALK Study rigorously developed and is currently testing the effectiveness of culturally sensitive interventions to improve patients' and families' consideration of LKT. Results from TALK will provide needed evidence on ways to enhance consideration of this optimal treatment for patients with end stage renal disease.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov number, <a href="http://www.clinicaltrials.gov/ct2/show/NCT00932334">NCT00932334</a></p

    Importance of lysosomal cysteine proteases in lung disease

    Get PDF
    The human lysosomal cysteine proteases are a family of 11 proteases whose members include cathepsins B, C, H, L, and S. The biology of these proteases was largely ignored for decades because of their lysosomal location and the belief that their function was limited to the terminal degradation of proteins. In the past 10 years, this view has changed as these proteases have been found to have specific functions within cells. This review highlights some of these functions, specifically their roles in matrix remodeling and in regulating the immune response, and their relationship to lung diseases
    corecore