611 research outputs found

    The virtual environment display system

    Get PDF
    Virtual environment technology is a display and control technology that can surround a person in an interactive computer generated or computer mediated virtual environment. It has evolved at NASA-Ames since 1984 to serve NASA's missions and goals. The exciting potential of this technology, sometimes called Virtual Reality, Artificial Reality, or Cyberspace, has been recognized recently by the popular media, industry, academia, and government organizations. Much research and development will be necessary to bring it to fruition

    Direction Judgement Errors in Perspective Displays

    Get PDF
    Spatial information transfer characteristics of perspective situation displays were investigated by having eight subjects judge the directions of displayed targets relative to a fixed position in the center of computer generated perspective scenes. Their errors in judging azimuth angles varied sinusoidally with the azimuth of the targets. Errors alternated between clockwise and counterclock wise from one direction quadrant to the next. As the perspective geometry was varied between telephoto lens and wide angle lens views, the direction of error gradually reversed in all quadrants. The results can be explained by systematic differences between the three-dimensional stimulus angles and the perspective projections of those angles onto the display screen

    Using Perilog to Explore "Decision Making at NASA"

    Get PDF
    Perilog, a context intensive text mining system, is used as a discovery tool to explore topics and concerns in "Decision Making at NASA," chapter 6 of the Columbia Accident Investigation Board (CAIB) Report, Volume I. Two examples illustrate how Perilog can be used to discover highly significant safety-related information in the text without prior knowledge of the contents of the document. A third example illustrates how "if-then" statements found by Perilog can be used in logical analysis of decision making. In addition, in order to serve as a guide for future work, the technical details of preparing a PDF document for input to Perilog are included in an appendix

    The exploration metaphor

    Get PDF
    NASA's experience in planetary exploration has demonstrated that the desktop workstation is inadequate for many visualization situations. The primary mission displays for the unmanned Surveyor missions to the moon during the mid-1960's, for example, were environmental images assembled on the inside surfaces of spherical shells. Future exploration missions will greatly benefit from advances in digital computer and display technology, but there remain unmet user interface needs. Alternative user interfaces and metaphors are needed for planetary exploration and other interactions with complex spatial environments. These interfaces and metaphors would enable the user to directly explore environments and naturally manipulate objects in those environments. Personal simulators, virtual workstations, and telepresence user interfaces are systems capable of providing this integration of user space and task space. The Exploration Metaphor is a useful concept for guiding the design of user interfaces for virtual environments and telepresence. To apply the Exploration Metaphor is to assert that computing is like exploration, and to support objects, operations, and contexts comparable to those encountered in the exploration of natural environments. The Exploration Metaphor, under development for user interfaces in support of NASA's planetary exploration missions and goals, will also benefit other applications where complex spatial information must be visualized. Visualization methods and systems for planetary exploration are becoming increasingly integrated and interactive as computing technology improves. These advances will benefit from virtual environment and telepresence interface technology. A key development has been the processing of multiple images and other sensor data to create detailed digital models of the planets and moons. Data from images of the Earth, Mars, and Miranda, for example, have been converted into 3D models, and dynamic virtual fly-overs have been computed as demonstrations. Similar processing of lower altitude photography and the use of computer aided design tools promise to produce very detailed models in the future

    A relational metric, its application to domain analysis, and an example analysis and model of a remote sensing domain

    Get PDF
    An objective and quantitative method has been developed for deriving models of complex and specialized spheres of activity (domains) from domain-generated verbal data. The method was developed for analysis of interview transcripts, incident reports, and other text documents whose original source is people who are knowledgeable about, and participate in, the domain in question. To test the method, it is applied here to a report describing a remote sensing project within the scope of the Earth Observing System (EOS). The method has the potential to improve the designs of domain-related computer systems and software by quickly providing developers with explicit and objective models of the domain in a form which is useful for design. Results of the analysis include a network model of the domain, and an object-oriented relational analysis report which describes the nodes and relationships in the network model. Other products include a database of relationships in the domain, and an interactive concordance. The analysis method utilizes a newly developed relational metric, a proximity-weighted frequency of co-occurrence. The metric is applied to relations between the most frequently occurring terms (words or multiword entities) in the domain text, and the terms found within the contexts of these terms. Contextual scope is selectable. Because of the discriminating power of the metric, data reduction from the association matrix to the network is simple. In addition to their value for design. the models produced by the method are also useful for understanding the domains themselves. They can, for example, be interpreted as models of presence in the domain

    Virtual space and 2-dimensional effects in perspective displays

    Get PDF
    When interpreting three dimensional spatial relationships presented on a two dimensional display surface, the viewer is required to mentally reconstruct the original information. This reconstruction is influenced by both the perspective geometry of the displayed image and the viewer's eye position relative to the display. In a study which manipulated these variables, subjects judged the azimuth direction of a target object relative to a reference object fixed in the center of a perspective display. The results support a previously developed model which predicted that the azimuth judgement error would be a sinusoidal function of stimulus azimuth. The amplitude of this function was correctly predicted to be systematically modulated by both the perspective geometry of the image and the viewer's eye position relative to the screen. Interaction of the two components of the model, the virtual space effect and the 3D-to-2D projection effect, predicted the relative amplitudes of the sinusoidal azimuth error functions for the various conditions of the experiment. Mean azimuth judgements in some directions differed by as much as 25 degrees as a result of different combinations of eye position and image geometry. The results illustrate the need to consider the effects of perspective geometry when designing spatial information instruments, and show the model to be a reliable predictor of average performance

    Reporter Concerns in 300 Mode-Related Incident Reports from NASA's Aviation Safety Reporting System

    Get PDF
    A model has been developed which represents prominent reporter concerns expressed in the narratives of 300 mode-related incident reports from NASA's Aviation Safety Reporting System (ASRS). The model objectively quantifies the structure of concerns which persist across situations and reporters. These concerns are described and illustrated using verbatim sentences from the original narratives. Report accession numbers are included with each sentence so that concerns can be traced back to the original reports. The results also include an inventory of mode names mentioned in the narratives, and a comparison of individual and joint concerns. The method is based on a proximity-weighted co-occurrence metric and object-oriented complexity reduction

    A Practical Guide to Interpretation of Large Collections of Incident Narratives Using the QUORUM Method

    Get PDF
    Analysis of incident reports plays an important role in aviation safety. Typically, a narrative description, written by a participant, is a central part of an incident report. Because there are so many reports, and the narratives contain so much detail, it can be difficult to efficiently and effectively recognize patterns among them. Recognizing and addressing recurring problems, however, is vital to continuing safety in commercial aviation operations. A practical way to interpret large collections of incident narratives is to apply the QUORUM method of text analysis, modeling, and relevance ranking. In this paper, QUORUM text analysis and modeling are surveyed, and QUORUM relevance ranking is described in detail with many examples. The examples are based on several large collections of reports from the Aviation Safety Reporting System (ASRS) database, and a collection of news stories describing the disaster of TWA Flight 800, the Boeing 747 which exploded in mid- air and crashed near Long Island, New York, on July 17, 1996. Reader familiarity with this disaster should make the relevance-ranking examples more understandable. The ASRS examples illustrate the practical application of QUORUM relevance ranking

    Exocentric direction judgements in computer-generated displays and actual scenes

    Get PDF
    One of the most remarkable perceptual properties of common experience is that the perceived shapes of known objects are constant despite movements about them which transform their projections on the retina. This perceptual ability is one aspect of shape constancy (Thouless, 1931; Metzger, 1953; Borresen and Lichte, 1962). It requires that the viewer be able to sense and discount his or her relative position and orientation with respect to a viewed object. This discounting of relative position may be derived directly from the ranging information provided from stereopsis, from motion parallax, from vestibularly sensed rotation and translation, or from corollary information associated with voluntary movement. It is argued that: (1) errors in exocentric judgements of the azimuth of a target generated on an electronic perspective display are not viewpoint-independent, but are influenced by the specific geometry of their perspective projection; (2) elimination of binocular conflict by replacing electronic displays with actual scenes eliminates a previously reported equidistance tendency in azimuth error, but the viewpoint dependence remains; (3) the pattern of exocentrically judged azimuth error in real scenes viewed with a viewing direction depressed 22 deg and rotated + or - 22 deg with respect to a reference direction could not be explained by overestimation of the depression angle, i.e., a slant overestimation

    Dominance and leadership: Useful concepts in human-horse interactions?

    Get PDF
    Dominance hierarchies in horses primarily influence priority access to limited resources of any kind, resulting in predictable contest outcomes that potentially minimize aggressive encounters and associated risk of injury. Levels of aggression in group-kept horses under domestic conditions have been reported to be higher than in their feral counterparts but can often be attributed to suboptimal management. Horse owners often express concerns about the risk of injuries occurring in group-kept horses, but these concerns have not been substantiated by empirical investigations. What has not yet been sufficiently addressed are human safety aspects related to approaching and handling group-kept horses. Given horse\u27s natural tendency to synchronize activity to promote group cohesion, questions remain about how group dynamics influence human–horse interactions. Group dynamics influence a variety of management scenarios, ranging from taking a horse out of its social group to the prospect of humans mimicking the horse\u27s social system by taking a putative leadership role and seeking after an alpha position in the dominance hierarchy to achieve compliance. Yet, there is considerable debate about whether the roles horses attain in their social group are of any relevance in their reactions to humans. This article reviews the empirical data on social dynamics in horses, focusing on dominance and leadership theories and the merits of incorporating those concepts into the human–horse context. This will provide a constructive framework for informed debate and valuable guidance for owners managing group-kept horses and for optimizing human–horse interactions
    • …
    corecore