225 research outputs found

    Infection with a Virulent Strain of Wolbachia Disrupts Genome Wide-Patterns of Cytosine Methylation in the Mosquito Aedes aegypti

    Get PDF
    BACKGROUND Cytosine methylation is one of several reversible epigenetic modifications of DNA that allow a greater flexibility in the relationship between genotype and phenotype. Methylation in the simplest models dampens gene expression by modifying regions of DNA critical for transcription factor binding. The capacity to methylate DNA is variable in the insects due to diverse histories of gene loss and duplication of DNA methylases. Mosquitoes like Drosophila melanogaster possess only a single methylase, DNMT2. DESCRIPTION Here we characterise the methylome of the mosquito Aedes aegypti and examine its relationship to transcription and test the effects of infection with a virulent strain of the endosymbiont Wolbachia on the stability of methylation patterns. CONCLUSION We see that methylation in the A. aegypti genome is associated with reduced transcription and is most common in the promoters of genes relating to regulation of transcription and metabolism. Similar gene classes are also methylated in aphids and honeybees, suggesting either conservation or convergence of methylation patterns. In addition to this evidence of evolutionary stability, we also show that infection with the virulent wMelPop Wolbachia strain induces additional methylation and demethylation events in the genome. While most of these changes seem random with respect to gene function and have no detected effect on transcription, there does appear to be enrichment of genes associated with membrane function. Given that Wolbachia lives within a membrane-bound vacuole of host origin and retains a large number of genes for transporting host amino acids, inorganic ions and ATP despite a severely reduced genome, these changes might represent an evolved strategy for manipulating the host environments for its own gain. Testing for a direct link between these methylation changes and expression, however, will require study across a broader range of developmental stages and tissues with methods that detect splice variants.This research was supported by The National Health and Medical Research Council of Australia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Diversifying selection and host adaptation in two endosymbiont genomes

    Get PDF
    Background: The endosymbiont Wolbachia pipientis infects a broad range of arthropod and filarial nematode hosts. These diverse associations form an attractive model for understanding host: symbiont coevolution. Wolbachia's ubiquity and ability to dramatically alter host reproductive biology also form the foundation of research strategies aimed at controlling insect pests and vector-borne disease. The Wolbachia strains that infect nematodes are phylogenetically distinct, strictly vertically transmitted, and required by their hosts for growth and reproduction. Insects in contrast form more fluid associations with Wolbachia. In these taxa, host populations are most often polymorphic for infection, horizontal transmission occurs between distantly related hosts, and direct fitness effects on hosts are mild. Despite extensive interest in the Wolbachia system for many years, relatively little is known about the molecular mechanisms that mediate its varied interactions with different hosts. We have compared the genomes of the Wolbachia that infect Drosophila melanogaster, wMel and the nematode Brugia malayi, wBm to that of an outgroup Anaplasma marginale to identify genes that have experienced diversifying selection in the Wolbachia lineages. The goal of the study was to identify likely molecular mechanisms of the symbiosis and to understand the nature of the diverse association across different hosts. Results: The prevalence of selection was far greater in wMel than wBm. Genes contributing to DNA metabolism, cofactor biosynthesis, and secretion were positively selected in both lineages. In wMel there was a greater emphasis on DNA repair, cell division, protein stability, and cell envelope synthesis. Conclusion: Secretion pathways and outer surface protein encoding genes are highly affected by selection in keeping with host: parasite theory. If evidence of selection on various cofactor molecules reflects possible provisioning, then both insect as well as nematode Wolbachia may be providing substances to hosts. Selection on cell envelope synthesis, DNA replication and repair machinery, heat shock, and two component switching suggest strategies insect Wolbachia may employ to cope with diverse host and intra-host environments

    The Relative Importance of Innate Immune Priming in Wolbachia-Mediated Dengue Interference

    Get PDF
    The non-virulent Wolbachia strain wMel and the life-shortening strain wMelPop-CLA, both originally from Drosophila melanogaster, have been stably introduced into the mosquito vector of dengue fever, Aedes aegypti. Each of these Wolbachia strains interferes with viral pathogenicity and/or dissemination in both their natural Drosophila host and in their new mosquito host, and it has been suggested that this virus interference may be due to host immune priming by Wolbachia. In order to identify aspects of the mosquito immune response that might underpin virus interference, we used whole-genome microarrays to analyse the transcriptional response of A. aegypti to the wMel and wMelPop-CLA Wolbachia strains. While wMel affected the transcription of far fewer host genes than wMelPop-CLA, both strains activated the expression of some immune genes including anti-microbial peptides, Toll pathway genes and genes involved in melanization. Because the induction of these immune genes might be associated with the very recent introduction of Wolbachia into the mosquito, we also examined the same Wolbachia strains in their original host D. melanogaster. First we demonstrated that when dengue viruses were injected into D. melanogaster, virus accumulation was significantly reduced in the presence of Wolbachia, just as in A. aegypti. Second, when we carried out transcriptional analyses of the same immune genes up-regulated in the new heterologous mosquito host in response to Wolbachia we found no over-expression of these genes in D. melanogaster, infected with either wMel or wMelPop. These results reinforce the idea that the fundamental mechanism involved in viral interference in Drosophila and Aedes is not dependent on the up-regulation of the immune effectors examined, although it cannot be excluded that immune priming in the heterologous mosquito host might enhance the virus interference trait

    An expressed sequence tag (EST) library for Drosophila serrata, a model system for sexual selection and climatic adaptation studies

    Get PDF
    The native Australian fly Drosophila serrata belongs to the highly speciose montium subgroup of the melanogaster species group. It has recently emerged as an excellent model system with which to address a number of important questions, including the evolution of traits under sexual selection and traits involved in climatic adaptation along latitudinal gradients. Understanding the molecular genetic basis of such traits has been limited by a lack of genomic resources for this species. Here, we present the first expressed sequence tag (EST) collection for D. serrata that will enable the identification of genes underlying sexually-selected phenotypes and physiological responses to environmental change and may help resolve controversial phylogenetic relationships within the montium subgroup

    The wMelPop strain of Wolbachia interferes with dopamine levels in Aedes aegypti

    Get PDF
    Wolbachia is an intracellular bacterium that has been stably transinfected into the mosquito vector of dengue, Aedes aegypti. This inherited infection causes a range of metabolic and phenotypic alterations in the mosquito, which might be related to neuronal abnormalities. In order to determine if these alterations were caused by the manipulation of neuroamines by this bacterium, we studied the expression of genes involved in the dopamine biosynthetic pathway and also measured the amount of dopamine in infected and uninfected mosquitoes of different ages. Wolbachia-infected mosquitoes exhibit greater expression of some genes related to the melanization pathway, but not for those directly linked to dopamine production. Although dopamine levels were higher in Wolbachia-positive mosquitoes this was not consistent across all insect ages nor was it related to the previously described Wolbachia induced "bendy" and "shaky" phenotypes

    Transinfection of buffalo flies (Haematobia irritans exigua) with Wolbachia and effect on host biology

    Get PDF
    Buffalo flies (Haematobia irritans exigua) (BF) and closely related horn flies (Haematobia irritans irritans) (HF) are invasive haematophagous parasites with significant economic and welfare impacts on cattle production. Wolbachia are intracellular bacteria found widely in insects and currently of much interest for use in novel strategies for the area wide control of insect pests and insect-vectored diseases. In this paper, we report the transinfection of BF towards the development of area-wide controls

    Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus.

    Get PDF
    Dengue is the most prevalent arthropod-borne virus, with at least 40% of the world's population at risk of infection each year. In Australia, dengue is not endemic, but viremic travelers trigger outbreaks involving hundreds of cases. We compared the susceptibility of Aedes aegypti mosquitoes from two geographically isolated populations to two strains of dengue virus serotype 2. We found, interestingly, that mosquitoes from a city with no history of dengue were more susceptible to virus than mosquitoes from an outbreak-prone region, particularly with respect to one dengue strain. These findings suggest recent evolution of population-based differences in vector competence or different historical origins. Future genomic comparisons of these populations could reveal the genetic basis of vector competence and the relative role of selection and stochastic processes in shaping their differences. Lastly, we show the novel finding of a correlation between midgut dengue titer and titer in tissues colonized after dissemination

    El Niño Southern Oscillation, overseas arrivals and imported chikungunya cases in Australia: A time series analysis.

    Get PDF
    BACKGROUND: Chikungunya virus (CHIKV) is an emerging mosquito-borne pathogen circulating in tropical and sub-tropical regions. Although autochthonous transmission has not been reported in Australia, there is a potential risk of local CHIKV outbreaks due to the presence of suitable vectors, global trade, frequent international travel and human adaptation to changes in climate. METHODOLOGY/PRINCIPAL FINDINGS: A time series seasonal decomposition method was used to investigate the seasonality and trend of monthly imported CHIKV cases. This pattern was compared with the seasonality and trend of monthly overseas arrivals. A wavelet coherence analysis was applied to examine the transient relationships between monthly imported CHIKV cases and southern oscillation index (SOI) in time-frequency space. We found that the number and geographical distribution of countries of acquisition for CHIKV in travellers to Australia has increased in recent years. The number of monthly imported CHIKV cases displayed an unstable increased trend compared with a stable linear increased trend in monthly overseas arrivals. Both imported CHIKV cases and overseas arrivals showed substantial seasonality, with the strongest seasonal effects in each January, followed by each October and July. The wavelet coherence analysis identified four significant transient relationships between monthly imported CHIKV cases and 6-month lagged moving average SOI, in the years 2009-2010, 2012, 2014 and 2015-2016. CONCLUSION/SIGNIFICANCE: High seasonal peaks of imported CHIKV cases were consistent with the high seasonal peaks of overseas arrivals into Australia. Our analysis also indicates that El Niño Southern Oscillation (ENSO) variation may impact CHIKV epidemics in endemic regions, in turn influencing the pattern of imported cases
    corecore