113 research outputs found

    Difficulty In My Heart

    Get PDF

    In The Shapes Of Animals

    Get PDF

    Ugly, smiling Agnes...

    Get PDF

    Lying About Money

    Get PDF

    No light, just...

    Get PDF

    A New Function for the LDL Receptor: Transcytosis of LDL across the Blood–Brain Barrier

    Get PDF
    Lipoprotein transport across the blood–brain barrier (BBB) is of critical importance for the delivery of essential lipids to the brain cells. The occurrence of a low density lipoprotein (LDL) receptor on the BBB has recently been demonstrated. To examine further the function of this receptor, we have shown using an in vitro model of the BBB, that in contrast to acetylated LDL, which does not cross the BBB, LDL is specifically transcytosed across the monolayer. The C7 monoclonal antibody, known to interact with the LDL receptor-binding domain, totally blocked the transcytosis of LDL, suggesting that the transcytosis is mediated by the receptor. Furthermore, we have shown that cholesterol-depleted astrocytes upregulate the expression of the LDL receptor at the BBB. Under these conditions, we observed that the LDL transcytosis parallels the increase in the LDL receptor, indicating once more that the LDL is transcytosed by a receptor-mediated mechanism. The nondegradation of the LDL during the transcytosis indicates that the transcytotic pathway in brain capillary endothelial cells is different from the LDL receptor classical pathway. The switch between a recycling receptor to a transcytotic receptor cannot be explained by a modification of the internalization signals of the cytoplasmic domain of the receptor, since we have shown that LDL receptor messengers in growing brain capillary ECs (recycling LDL receptor) or differentiated cells (transcytotic receptor) are 100% identical, but we cannot exclude posttranslational modifications of the cytoplasmic domain, as demonstrated for the polymeric immunoglobulin receptor. Preliminary studies suggest that caveolae are likely to be involved in the potential transport of LDL from the blood to the brain

    Aragonite bias exhibits systematic spatial variation in the late Cretaceous Western Interior Seaway, North America

    Get PDF
    Preferential dissolution of the biogenic carbonate polymorph aragonite promotes preservational bias in shelly marine faunas. Whilst field studies have documented the impact of preferential aragonite dissolution on fossil molluscan diversity, its impact on regional and global biodiversity metrics is debated. Epicontinental seas are especially prone to conditions which both promote and inhibit preferential dissolution, which may result in spatially extensive zones with variable preservation. Here we present a multi-faceted evaluation of aragonite dissolution within the late Cretaceous Western Interior Seaway of North America. Occurrence data of molluscs from two time intervals (Cenomanian-Turonian boundary, early Campanian) are plotted on new high-resolution paleogeographies to assess aragonite preservation within the seaway. Fossil occurrences, diversity estimates and sampling probabilities for calcitic and aragonitic fauna were compared in zones defined by depth and distance from the seaway margins. Apparent range sizes, which could be influenced by differential preservation potential of aragonite between separate localities, were also compared. Our results are consistent with exacerbated aragonite dissolution within specific depth zones for both time slices, with aragonitic bivalves additionally showing a statistically significant decrease in range size compared to calcitic fauna within carbonate-dominated Cenomanian-Turonian strata. However, we are unable to conclusively show that aragonite dissolution impacted diversity estimates. Therefore, whilst aragonite dissolution is likely to have affected the preservation of fauna in specific localities, time averaging and instantaneous preservation events preserve regional biodiversity. Our results suggest that the spatial expression of taphonomic biases should be an important consideration for paleontologists working on paleobiogeographic problems
    • …
    corecore