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8 ABSTRACT

9 Preferential dissolution of the biogenic carbonate polymorph aragonite promotes 

10 preservational bias in shelly marine faunas. Whilst field studies have documented the impact 

11 of preferential aragonite dissolution on fossil molluscan diversity, its impact on regional and 

12 global biodiversity metrics is debated. Epicontinental seas are especially prone to conditions 

13 which both promote and inhibit preferential dissolution, which may result in spatially extensive 

14 zones with variable preservation. Here we present a multi-faceted evaluation of aragonite 

15 dissolution within the late Cretaceous Western Interior Seaway of North America. Occurrence 

16 data of molluscs from two time intervals (Cenomanian-Turonian boundary, early Campanian) 

17 are plotted on new high-resolution paleogeographies to assess aragonite preservation within 

18 the seaway. Fossil occurrences, diversity estimates and sampling probabilities for calcitic and 

19 aragonitic fauna were compared in zones defined by depth and distance from the seaway 

20 margins. Apparent range sizes, which could be influenced by differential preservation potential 

21 of aragonite between separate localities, were also compared. Our results are consistent with 

22 exacerbated aragonite dissolution within specific depth zones for both time slices, with 

23 aragonitic bivalves additionally showing a statistically significant decrease in range size 

24 compared to calcitic fauna within carbonate-dominated Cenomanian-Turonian strata. 

25 However, we are unable to conclusively show that aragonite dissolution impacted diversity 

26 estimates. Therefore, whilst aragonite dissolution is likely to have affected the preservation of 
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27 fauna in specific localities, time averaging and instantaneous preservation events preserve 

28 regional biodiversity. Our results suggest that the spatial expression of taphonomic biases 

29 should be an important consideration for paleontologists working on paleobiogeographic 

30 problems.

31

32 Key words: Mollusca, calcite, OAE2, Cretaceous, fossil record bias, sampling bias. 

33

34 INTRODUCTION

35 WHILST the fossil record provides a unique window into past life on Earth, it is well known 

36 that it is both pervasively and non-uniformly biased (Raup, 1976; Koch, 1978; Foote and 

37 Sepkoski, 1999; Alroy et al., 2001; Allison and Bottjer, 2011). Geologic, taphonomic and 

38 anthropogenic biases (such as the amount of available fossiliferous rock for sampling, variation 

39 in fossilization, and the degree to which the available rock record has been sampled) skew or 

40 remove information from the fossil record, leaving the remaining catalogue of data uneven and 

41 incomplete. Although biomineralized remains have an increased preservation potential 

42 compared to soft bodied tissues (Allison, 1988; Briggs, 2003), they are still influenced by 

43 various geologic and taphonomic processes (Kidwell and Bosence, 1991; Kidwell and 

44 Brenchley, 1994; Kidwell and Jablonski, 1983; Best, 2008; Hendy, 2011). Shelly marine 

45 faunas are especially susceptible to misrepresentation due to preferential dissolution of 

46 biogenic carbonate polymorphs. It is well established that aragonite, a polymorph of CaCO3 

47 found within the biomineralized shells of many invertebrates, dissolves more rapidly than the 

48 more common form of CaCO3, calcite, and at a higher pH (Canfield and Raiswell, 1991; Tynan 

49 and Opdyke, 2011). Whilst both polymorphs can be destroyed by adverse conditions near the 

50 sediment-water interface (Best and Kidwell, 2000) and the effects of dissolution can vary 

51 between fauna (due to microstructure surface area, morphology, and shell organic content: 
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52 Walter and Morse, 1984; Harper, 2000; Kosnik et al., 2011), it is still the case that aragonitic 

53 shells are more likely to dissolved than calcitic remains (Brett and Baird, 1986). As mineral 

54 composition of molluscs is usually conserved at the Family level (Carter, 1990), this has the 

55 potential to skew the record of molluscan diversity and trophic structure through time (Cherns 

56 et al., 2011; Cherns and Wright, 2000; Wright et al., 2003), and negatively affect subsequent 

57 work that relies on the relative abundance and distribution of shelly marine fauna (Kidwell, 

58 2005). Cherns and Wright (2001) argued that early-stage dissolution could be substantial and 

59 referred to the phenomenon as the “Missing Mollusc” bias.  Subsequent work on a multitude 

60 of temporal and spatial scales (Wright et al., 2003; Bush and Bambach, 2004; Kidwell, 2005; 

61 Crampton et al., 2006; Valentine et al., 2006; Foote et al., 2015; Jordan et al., 2015, Hsieh et 

62 al., 2019) has debated the magnitude of this bias; however, there is a broad agreement on the 

63 potential for dominantly aragonitic shells to suffer greater post-mortem diagenetic destruction 

64 in the Taphonomically Active Zone (TAZ) (Davies et al., 1989; Foote et al., 2015). Whilst the 

65 effects of dissolution on the global macroevolutionary record of molluscs has been found to be 

66 limited, possibly due to the potential of aragonite to recrystallize to calcite (Kidwell 2005; Paul 

67 et al., 2008; Jordan et al., 2015), it is conceivable that local or regional conditions could impact 

68 severely on perceived patterns of biodiversity in restricted areas (Bush and Bambach 2004). In 

69 a regional study of Cenozoic molluscs, Foote et al. (2015) found evidence to suggest that 

70 aragonite dissolution was both enhanced in carbonate sediments and insignificant within 

71 siliciclastic sediments, with similar preservation potential of aragonitic and calcitic fauna 

72 within the latter. They further emphasized the fact that scale is an important factor in 

73 determining the observable impacts of aragonite dissolution, which will strongly vary between 

74 local (potentially consisting of an individual bed), regional and global studies. However, to 

75 date research has focused on assessing the influence of aragonite bias on temporal trends of 

76 biodiversity and has ignored the potential for direct spatial expression.
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77 Early stage dissolution occurs within modern environments as a result of microbially mediated 

78 reactions increasing local acidity (Walter et al., 1993; Ku et al., 1999; Sanders, 2003). 

79 Bacterially-mediated decay of organic material within the upper sedimentary column occurs in 

80 a series of preferential redox reactions. By-products of these reactions, such as solid phase 

81 sulphides from sulphate reduction and CO2 from aerobic oxidation, result in changes to local 

82 pore-water saturation of calcium carbonate (Canfield and Raiswell, 1991; Ku et al., 1999). 

83 Additionally, oxidation of H2S above the oxycline increases acidity at that boundary; if this 

84 occurs at the sediment-water interface then it can adversely affect the preservation of shelly 

85 marine fauna (Ku et al., 1999). As such, dysoxic sedimentary environments might have a 

86 predisposition for dissolution of biogenic carbonate and enhance the effect of the “Missing 

87 Mollusc” bias (Jordan et al., 2015). Epicontinental seas, marine water-bodies which form by 

88 the flooding of continental interiors, are especially prone to strong water column stratification 

89 and sea level variation, and have a pre-disposition to seasonally anoxic or dysoxic conditions 

90 (Allison and Wells, 2006; Peters, 2009). As such, they have the potential to be more prone to 

91 both preferential aragonite loss and preservation than modern oceans. Cherns et al.'s (2011) 

92 model for taphonomic gradients of aragonite preservation along a shelf to basin transect can be 

93 readily applied to epicontinental sea settings (Fig. 1). If we assume the center of a seaway was 

94 stratified with at least a seasonally anoxic basin floor, we would expect enhanced dissolution 

95 to occur in the seaway margins, likely in the mid-to-outer shelf setting (Cherns et al., 2011). In 

96 the anoxic basin center we would expect to see enhanced preservation, as an aragonitic skeleton 

97 residing on the surface sediment in an anoxic water column would not be susceptible to 

98 dissolution from H2S oxidation (Jordan et al., 2015; however, we would not expect to see 

99 abundant benthos in such a setting because of bottom water toxicity). It is apparent this could 

100 result in spatially expansive zones with conditions predisposed for heightened aragonite 

101 dissolution and preservation (Fig. 1; it is important to note that we do not expect all aragonitic 
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102 fauna to be missing from any region of the seaway – merely that a lower relative proportion of 

103 aragonitic molluscs be found, due to a reduced probability of an individual site recording their 

104 occurrence). How these hypothesized basin-margin to basin-center zones could influence long 

105 term patterns of mollusc distribution, preservation and recovery remains to be examined. As 

106 epicontinental seas contain the majority of our Phanerozoic fossil record (Allison and Wells, 

107 2006), it is imperative that we understand systematic biases that may specifically affect these 

108 settings. 

109

110 Here we present a spatial investigation of aragonite dissolution within the late Cretaceous 

111 Western Interior Seaway (WIS) of North America, using sampling probability estimates and 

112 multiple logisitic regression to evaluate patterns of spatial distribution in preserved calcitic and 

113 aragonitic fauna. We address two key questions: (1) does aragonite bias exhibit systematic 

114 spatial variation across the seaway and (2) if so, does this influence perceived patterns of 

115 diversity?

116

117 MATERIALS AND METHODS

118 Time Intervals and Paleogeography

119 The two stratigraphic intervals or time slices (Cenomanian-Turonian and early Campanian) 

120 were selected: (1) because of purported dysoxic conditions within their duration; and (2) due 

121 to their differences in environment, oceanography and preserved lithology, allowing for 

122 comparison of taphonomic regimes. The first interval covers the Cenomanian–Turonian 

123 boundary, spanning from the Dunveganoceras pondi to Collignoniceras woollgari ammonite 

124 zone (~94.7–93 Ma) (Cobban et al., 2006). The second interval spans the early Campanian, 

125 from the Scaphites leei III to Baculites obtusus ammonite zones (~83.5-80.58 Ma) (Cobban et 
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126 al., 2006). The geologic context of stratigraphic intervals is detailed in Supplementary 

127 Information 1.

128 A global atlas of 1:20,000,000 scale paleogeographic maps, compiled by GETECH plc, formed 

129 the basis for new regional-scale, high resolution interpretations for the selected time intervals. 

130 The original paleogeographic maps (Markwick, 2007) are underpinned by the GETECH plate 

131 model (v1), which is outlined further in Supplementary Information 1. High resolution 

132 mapping involved synthesis of stratigraphic, sedimentologic and paleontologic information to 

133 produce 1:5,000,000 scale paleogeographies with suggested paleobathymetry. A full list of 

134 decisions on paleogeographic reconstructions and key references for each time interval are 

135 provided in Supplementary Information 1.

136 Landward-to-basinward arrangements of a priori binned zones for each time-slice were based 

137 on average paleobathymetry (Fig. 2). Bathymetric reconstructions were divided into four bins, 

138 each of which covers a specific interpreted depth range: Nearshore (<50 m), Proximal Offshore 

139 (50-100 m), Distal Offshore (100-150 m) and Basin Center (>150 m). These designations were 

140 based on the previously constructed paleobathymetry for the WIS produced by Sageman and 

141 Arthur (1994), but match the paleobathymetry in our new maps and represent a reasonably 

142 high resolution without being compromised by large changes in shoreline position within our 

143 chosen time slices.

144 Distance-from-paleoshoreline zones (Fig. S1) were constructed based on 50 km intervals from 

145 the time-averaged paleo-shoreline position until reaching the basin center, with number of 

146 occurrences, collections and total outcrop area plotted per zone. These were generated by 

147 constructing a fishnet of points in ArcGIS (ESRI, 2010) using the “Fishnet tool”, which were 

148 selected by the “Select By Location” tool with increasing distance in 50 km intervals from the 

149 paleoshoreline: the position of the most basinward selected points was used for the bin 
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150 boundary. Results for depth zones are used in the main body of this manuscript; distance-from-

151 paleoshoreline zones are available in Supplementary Information 1 and Figures S2, S4, S6 and 

152 S7.

153

154 Fossil Dataset

155 A presence-only fossil occurrence dataset of bivalve and ammonite taxa was produced for the 

156 selected stratigraphic intervals, collated from personally provided digitized collections from 

157 the United States Geological Survey (USGS) and Smithsonian Museum of Natural History 

158 (NMNH), as well as downloads from the Paleobiology Database (PBDB; http:// 

159 paleobiodb.org), and iDigBio (http://www.idigbio.org). Each occurrence includes taxonomic 

160 and geographic locality data, an associated collection with lithologic and geologic information, 

161 and modern latitudinal and longitudinal co-ordinates. Data were extensively screened for 

162 problematic records and to ensure taxonomic validation (see Supplementary Information 2 for 

163 the latter). 

164 The resultant Cenomanian–Turonian dataset contains 5867 occurrences from 2409 localities, 

165 with 207 genera, 1549 species, and 3886 specimens identifiable to species level. The early 

166 Campanian dataset comprises 2544 occurrences from 1186 localities, recording 163 genera, 

167 1405 species, and 1405 specimens identifiable to species level.  Generic level taxonomic 

168 diversity was used for all tests; species level results can be found in Supplementary Information 

169 1 and in Supplementary figures S3-6. Full information regarding downloads, sources and 

170 screening of data can be found in Supplementary Information 1, and the full dataset found in 

171 Supplementary Information 2.

172

173 Mineralogy
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174 Bivalve shells are a composite of layered mineral crystallites, which are sheathed by a 

175 refractory organic matrix of fibrous protein (Taylor, 1969). As these mineral layers can be 

176 comprised of both calcite and aragonite, variation in overall mineral composition must be taken 

177 into account when assigning a predominant mineralogy to a specific bivalve Genera. Different 

178 scoring mechanisms have been adopted by previous workers to address this issue. Kidwell 

179 (2005) used a five-point decimal scoring system from entirely aragonitic (1) to entirely calcitic 

180 (3), with three permutations of mineralogy between. Crampton et al. (2006) adopted a simple 

181 and effective system of counting organisms as calcitic if they contained a calcitic element that 

182 would allow them to be identified to species level. We utilise a combination of these 

183 approaches - organisms were scored using the system of Kidwell (2005) to maintain the 

184 maximum amount of data, but simplified into binary categories afterwards based on whether 

185 they contained sufficient calcitic parts to enhance preservation potential. Note that we have not 

186 included either the inner myostracal layer or periostracum in our assignments of mineralogy. 

187 Information on shell composition was predominantly gathered from a personally provided 

188 dataset from S. Kidwell (Kidwell, 2005), as well as further studies from Taylor (Taylor, 1969; 

189 Taylor and Layman, 1972), Majewske (1974), Carter (1990), Schneider and Carter (2001), 

190 Lockwood (2003), Hollis (2008) and Ros-Franch (2009), as well as many papers focussed on 

191 single genera or families. For genera for which information regarding shell mineralogy was not 

192 available, composition was assigned based on the dominant mineralogy of the family, as 

193 composition is highly conservative both amongst species within a genera and amongst genera 

194 within a family (Taylor, 1969). In total, 124 bivalve genera were assigned a mineralogy, of 

195 which 41 (33%) were achieved using familial relation (Supplementary Information 2). 

196

197 Life habits 
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198 Life habits of bivalves were assembled to allow additional interrogation and interpretation of 

199 environmental and sampling regimes. Life habits were separated into the following categories: 

200 relation to substrate, mobility and diet. Data for each genera of bivalve were primarily gathered 

201 from the NMiTA Molluscan Life Habits Database (Todd, 2017) and the PBDB, with further 

202 data collected from the wider literature (Supplementary Information 2).

203

204 Outcrop Area

205 Relevant rock outcrop area was plotted per zone to evaluate broader scale bias influencing 

206 patterns of fossil distribution. Outcrop areas for the selected time slices were generated by 

207 combining state-wide digitized geologic maps from publicly available USGS downloads and 

208 selecting shape files which matched formations found within those time slices. Some State 

209 Surveys grouped relevant formations with other partially contemporaneous formations that 

210 spanned multiple stages: we chose to include these designations in order to present the 

211 maximum possible sampling extent in terms of outcrop area. Outcrop was projected in ArcGIS 

212 (ESRI, 2010) using the USA Contiguous Albers Equal Area conic projection, to minimize 

213 distortion of distances. Outcrop areas per zone were created by using the “Intersect tool” in the 

214 Geoprocessing toolbar in ArcGIS, and area (km2) calculated using the Calculate Geometry 

215 function in the attribute table. Outcrop was split into depth zones by using the Intersect tool in 

216 ArcGIS (ESRI, 2010). Outcrop area for each zone was calculated by summing the total area of 

217 all outcrop polygons within that zone. Collections per zone were counted by exporting 

218 occurrences selected in zones in the seaway as shapefiles, then using the “arcgisbinding” 

219 package to view and organise the data in R version 3.0.2 (Team, 2017).

220

221 Dominant lithology 
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222 Each collection was assigned a dominant lithology to allow for comparative testing. If these 

223 data were not available, a lithology was assigned from the dominant lithology of the formation, 

224 with reference to USGS formation records. Collections were assigned one of the following 

225 lithologies (primarily based off original USGS records): siliciclastic mudstone, siliciclastic 

226 siltstone, siliciclastic sandstone, conglomerate, ironstone, calcareous mudstone and siltstone, 

227 marl, calcarenite, limestone and chalk.

228

229 Range Size

230 If the presence of preferentially destructive zones is affecting the spatial distribution of 

231 aragonitic fauna, we might expect to see overall smaller range sizes for aragonitic organisms 

232 compared to calcitic organisms (Fig. 3). As such, range size estimates were produced for 

233 calcitic and aragonitic bivalves and compared to test if aragonite bias influenced perceived 

234 range of aragonitic organisms. Note that ammonites were excluded from this test due to the 

235 difference in life habit between them and bivalve fauna: ammonites have a pelagic to nektono-

236 benthic mode of life (Ritterbush et al., 2014), whilst bivalves are predominantly epifaunal and 

237 infaunal. 

238 Geographic locality data for the selected fauna was visualized in ArcGIS (ESRI, 2010). Faunal 

239 occurrences were paleo-rotated using the Getech Plate Model to match the paleogeography of 

240 the appropriate stages of the Late Cretaceous. This ensures that tectonic expansion and 

241 contraction of the North American plate from the Mesozoic to Recent has a negligible effect 

242 on propagating estimation error in range-size reconstructions. Fossil occurrences were 

243 projected into ArcGIS using the using the USA Contiguous Albers Equal Area conic 

244 projection. A 10 km buffer was additionally applied to each occurrence point in order to control 

245 for any error in paleogeographic or present position of fauna. ArcGIS (ESRI, 2010) was then 

246 used to construct convex hull polygons for each taxon, and the spatial analyst tools from this 

Page 10 of 74

Cambridge University Press

Paleobiology



For Peer Review

11

247 software calculated the area of each reconstructed polygon. We did not account for landforms 

248 within the ranges of any organisms, and thus ignored their area when calculating overall area 

249 of ranges. Several vertices for range size polygons appeared on what is classified as land within 

250 our paleogeographies; due to rapid changes in shoreline position within the WIS, we decided 

251 to keep using these fauna for range size estimations. Myers and Lieberman (2011) showed that 

252 relative range sizes for vertebrates in the WIS were not overly affected by resampling 

253 occurrence points – consequently, we have not carried out a similar test for this study. 

254 Comparisons between the ranges of aragonitic and calcitic fauna were carried out using the 

255 Wilcoxon-Mann-Whitney test with continuity correction (Brown and Rothery, 1993). 

256 Geographic range data for all applicable taxa are provided in Supplementary Information 2.

257

258 Sampling Probability and Multiple Logistic Regression

259 To be able to further observe differences between aragonitic and calcitic organisms throughout 

260 the seaway, we employed a modified version of the sampling probability method used by Foote 

261 et al. (2015) (after Foote and Raup, 1996). In this method, the sampling probability of a time 

262 bin was generated by compiling a list of all fauna with originations older than that bin and 

263 extinctions younger, and then dividing the total number of species found within the bin by that 

264 figure. This allows for a sampling probability to be estimated on a per bin, per group basis. 

265 Here we devised three variants on this method for application in the spatial realm. It should be 

266 made clear that the modified methods utilized in this work come with the caveat that in the 

267 spatial realm it is impossible to know if a species was present in a precise location in the past: 

268 for instance, if zones A, B, and C are designated with increasing distance away from a 

269 paleoshoreline, it cannot be assumed that because an organism exists in zones A and C that it 

270 was ever present in zone B. Consequently, the probabilities generated from the methods 

271 described below are relative, and cannot be taken as a “true” probability. However, the methods 
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272 utilized were designed to be as inclusive as possible and to deliver a strongly conservative 

273 estimate of true sampling probabilities between groups; consequently, these methods provide 

274 a useful estimate on the relative likelihood of sampling aragonitic or calcitic fauna. 

275 Furthermore, sampling probabilities through time based on regional studies such as those 

276 utilized by Foote at al. (2015) rely on the assumption that groups were not genuinely absent 

277 from the study region at a particular time and that other geographic variables do not have an 

278 effect – as such the use of these metrics to evaluate the distribution of fauna across the WIS is 

279 validated.

280 Three methods were devised for dealing with the issue of unknown “correct” distribution of 

281 species across the seaway and to correct for differences in the number of collections between 

282 zones: (1) finds two bins either side of the current bin and generates a list of the total number 

283 of possible species across those five bins; (2) finds all formations that appear in the selected 

284 bin that contain specimens of the selected group (e.g. calcitic bivalves), and then finds the total 

285 number of species for that group from those formations; (3) finds all formations in the current 

286 bin and the two adjacent bins that contain specimens of the selected group, and subsequently 

287 finds the total number of species from those formations. For all three methods, the total number 

288 of sampling opportunities per bin was generated by multiplying the number of potentially 

289 recoverable species by the number of collections to standardize for differences in collecting 

290 intensity. The low number of depth-based bins could potentially result in flattening the curve 

291 of sampling probability using Method 3, and thus Method 2 is employed in the main body of 

292 this paper for depth-based results. 

293 To determine the primary controls on sampling probability between the two stages, we used 

294 multiple logistic regression, coding sampling opportunities as the response variable and 

295 mineralogy, lithology, life habits (mobility, relation to substrate and feeding style) and depth 

296 zone as the predictor variables. Multiple logistic regression allows for the use of binomial 
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297 nominal values by using the odds ratio, a measure of the relationship between the odds of an 

298 outcome, in this case sampled (1) or not sampled (0), along with multiple potentially 

299 explanatory ecological or physiographic variables. A full model is generated that incorporates 

300 all potential variables, and a null model defined that includes none. Stepwise addition or 

301 deletion from the null or full models, respectively, and analysis in the change of likelihood and 

302 of respective AIC (Akaike information criterion) scores contributes to a final predictive model 

303 of explanatory variables and respective statistical significance.

304 Sampling opportunities were tabulated as the presence or absence of each recoverable genera 

305 per collection, per depth zone. Each sampling opportunity was assigned a lithology based on 

306 collection lithology, as well as all ecological attributes related to that genus. To test for 

307 multicollinearity between variables, correlation tests were run using Spearman-Rank 

308 correlation using the Performance Analytics package in R. Explanatory variables that showed 

309 a strong (above 0.7) statistically significant correlation were excluded from further analysis 

310 (Supplementary Information 1).

311 Interaction terms were also added to explore the possibility of multiple confounding factors 

312 and increased model complexity. These terms were restricted to a combination of lithology and 

313 mineralogy, so as to test for specific interactions between the two (e.g. whether preservation of 

314 aragonite was specifically enhanced within limestones). We also partitioned the data to be able 

315 to fully explore the influence of various contributing factors on sampling probability per depth 

316 zone, as well as include all organisms in the data (ammonites were excluded from analyses 

317 involving life habits, as discussed below). Both effect sizes of individual factors and AIC 

318 values of models are presented for statistically significant interactions. All methods were 

319 written and implemented using R.

320

321 Occurrences, Raw diversity and SQS
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322 To establish the potential influence of aragonite bias on diversity of shelly taxa, total 

323 occurrences of organisms were counted per zone using the Select By Location tool in ArcGIS 

324 (ESRI, 2010) which were used to generate landward-to-basinward profiles of raw occurrences, 

325 raw and subsampled diversity estimates. Shareholder quorum subsampling (SQS; Alroy, 

326 2010), a method for standardising taxonomic occurrence lists based on an estimate of coverage, 

327 was implemented in R using script provided by Alroy (pers. comms.) for each faunal group. 

328 Calcitic and aragonitic groups were evaluated for statistically significant differences using the 

329 Chi-squared test for non-random association (Brown and Rothery, 1993). All statistical tests 

330 were implemented in R. Results pertaining to patterns within raw occurrences can be found 

331 within Supplementary Information 1 and Figure S1. 

332

333 RESULTS

334 Sampling Probability

335 Cenomanian-Turonian

336 For generic level sampling probability (Fig. 4a), aragonitic bivalves and ammonites show a 

337 similar trend for the first three depth zones. After this, sampling probability drops to 0 for 

338 aragonitic bivalves (as none were recovered), whilst it increases to a peak for ammonites. 

339 Calcitic bivalves record a higher sampling probability than ammonites or aragonitic bivalves 

340 in all zones and show a basinwards increase in sampling probability.

341

342 Campanian

343 In the lower Campanian (Fig. 4b) ammonites have the highest sampling probabilities, showing 

344 a level trend across the seaway with a pronounced trough in the distal offshore. Aragonitic 

345 bivalves record a relative high sampling probability in the nearshore, followed by a sharp 

346 decline for both proximal and distal offshore zones and an increase towards the basin center. 
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347 Calcitic fauna have a consistently higher sampling probability than aragonitic bivalves, but 

348 lower than ammonites; they also show a level trend across the seaway, experiencing a peak in 

349 the distal offshore.

350

351 Sampling probability between lithologies

352 Cenomanian-Turonian

353 For the Cenomanian-Turonian (Fig. 4c,e,g), ammonites show the same trends and relatively 

354 little difference in absolute values between carbonate and siliciclastic sampling opportunities; 

355 the greatest difference appears in the basin center, where sampling probability is higher in 

356 carbonates. Aragonitic bivalves show a much larger difference, with siliciclastic opportunities 

357 scoring consistently higher than carbonate opportunities, even during the large decline within 

358 the proximal offshore. Calcitic bivalves show virtually no difference in sampling probability 

359 until the basin center, where sampling probability within carbonate sampling opportunities 

360 increases substantially. 

361

362 Campanian

363 For the Campanian (Fig. 4d,f,h), siliciclastic opportunities of ammonites score higher than 

364 carbonate except for within the nearshore. Aragonitic bivalves are not sampled within 

365 carbonate collections in either the nearshore, distal offshore or basin center; their sampling 

366 probability curve is virtually entirely made by appearances in siliciclastic sampling 

367 opportunities. Calcitic bivalves show a decoupled trend between lithologies, with carbonate 

368 sampling opportunities showing higher on average sampling probabilities that increase towards 

369 the basin center, compared to the fairly low scoring, level trend in siliciclastic.

370

371 Multiple Logistic Regression
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372 Results of the logistic regressions are shown in Tables 1-8 and summarized in Fig 5. When 

373 interpreting these, note that calcitic mineralogy is compared to aragonitic, so that positive 

374 regression coefficients indicate greater odds of sampling calcite. As lithology has multiple 

375 parameters, these were compared against the relative sampling probability of mudstone, which 

376 is used as a baseline. We are primarily interested in reporting effect sizes, which are gauged by 

377 the magnitude of regression coefficients. 

378 AIC scores are utilized in choosing ideal model fit when comparing models with and without 

379 two-way interactive terms (a combination of effects between explanatory parameters: for 

380 example, the relative odds of sampling calcitic fauna within a specific lithology), with lower 

381 scores indicating a better model fit. Only models with the lowest AIC scores are presented here 

382 and we only report factors with statistically significant results (p<0.05); full results can be 

383 found within Supplementary Information 2.

384

385 Cenomanian-Turonian

386 Mineralogy, lithology, feeding style and depth zone all influence the preservation potential of 

387 fauna in the seaway (Table 1); lower AIC scores when an interactive term is added suggest this 

388 provides a better model fit than when this is excluded. The odds of sampling calcitic fauna are 

389 shown to be 4.6 times (the exponential of the coefficient; 1.52) higher that of aragonitic fauna, 

390 with ANOVA results showing mineralogy contributing the most towards deviance from the 

391 null model. Limestone environments are shown to be detrimental to the sampling probability 

392 of fauna, whereas sandstones and siltstone enhance sampling probability. The positive 

393 interaction between mineralogy and limestone lithologies shows that aragonitic fauna have 

394 comparatively strongly reduced odds of being sampled within limestone environments. All 

395 depth zones are shown to have decreased sampling probability compared to the basin center, 

396 with nearshore and proximal offshore zones showing the worst sampling potential. 
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397 Chemosymbiont deposit feeders are shown to have an increased preservation potential 

398 compared to other feeding styles.

399

400 We additionally partitioned the data into each depth zone, to test for differences with increased 

401 bathymetry across the seaway (Table 2). The nearshore zone exhibits an increase in the odds 

402 of sampling calcitic fauna, although this effect is reduced compared to results across the whole 

403 seaway. Sandstones are also shown to exhibit increased sampling probability. The proximal 

404 offshore shows a significant increase in the odds of sampling calcitic bivalves relative to 

405 aragonitic bivalves (6.17 compared to 1.88 for the nearshore), as well as increased sampling 

406 probability in marl depositional environments and for chemosymbiotic deposit feeders. 

407 Limestone negatively impacts the sampling probability of bivalves; the positive interaction 

408 between calcite and limestone consequently suggests that this negative impact is related to the 

409 sampling probability of aragonitic bivalves. The distal offshore shows a similar pattern, 

410 although the relative odds of each are reduced compared to the proximal offshore. The basin 

411 center shows increased odds of sampling bivalves within calcarenite, calcareous shale and marl 

412 environments, but no other statistically significant terms. 

413

414 We also assessed depth zones for the inclusion of all organisms (Table 3). When ammonites 

415 ae included, the odds of sampling aragonitic fauna increase (calcitic bivalves show odds of 2.1 

416 higher sampling probability). Sandstone shows reduced odds of sampling any fauna, the 

417 opposite of previous results. The interaction between mineralogy and lithology shows 

418 increased sampling probability of calcitic organisms within limestones, sandstones, 

419 calcarenites and calcareous mudstones, suggesting this effect is predominantly produced by the 

420 addition of ammonite fauna. 
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421 When assessing zones independently (Table 4), nearshore sampling probabilities are only 

422 controlled by mineralogy, although again with lower odds than reported elsewhere (1.56). In 

423 the proximal offshore, results show an increased sampling probability of calcitic fauna within 

424 sandstones and calcareous mudstones. The distal offshore also shows strong interactions 

425 between sampling probability of calcitic fauna and lithology, with strongly positive coefficients 

426 for sandstone, limestone, calcareous shale, and calcarenite two-way interactions. Overall, the 

427 sampling probability of calcite compared to aragonitic fauna is high, although reduced 

428 compared to the proximal offshore. Within the basin center, mineralogy is not listed as a 

429 statistically significant interactive term on its own, but calcitic fauna exhibit increased 

430 sampling probability for interactive terms with calcarenites, calcareous mudstones, limestones, 

431 and marls.

432

433 Campanian

434 Models for all bivalves in the Campanian (Table 5) show comparatively few statistically 

435 significant contributors to sampling probability. By comparison with the Cenomanian, bivalve 

436 samples from the Campanian are only weakly influenced by mineralogy (showing odds of 2.16 

437 increased likelihood of sampling calcitic organisms). Additionally, only sandstone and 

438 interactions between sandstone and limestone with calcitic organisms are shown to exert any 

439 other influence on sampling probability.

440 This trend continues when partitioning the bivalve data into depth zones (Table 6). The 

441 nearshore zone has no statistically significant individual factors contributing to sampling 

442 probability. The proximal offshore includes statistically significant effects due to mineralogy 

443 and lithology, particularly limestones and calcareous mudstones where sampling probability is 

444 enhanced. Mineralogy, sandstone and the interaction between mineralogy and sandstone are 

445 reported as statistically significant factors for the distal offshore; mineralogy has a relatively 
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446 high positive coefficient (odds of 3.16 in favour of calcitic organisms). Sampling probability 

447 is enhanced in sandstones overall, but negatively influences the odds of recovering calcitic 

448 organisms: it therefore follows that aragonitic bivalves show particularly enhanced sampling 

449 within sandstones. Model results for the basin center suggest that only calcareous shale has a 

450 statistically significant positive impact on sampling probability.

451 When all organisms are assessed (Table 7), mineralogy and depth zone are the only 

452 contributors to the full model. Surprisingly, aragonitic organisms have a higher sampling 

453 probability than calcitic using the full model, with mineralogy only contributing to a very small 

454 amount of deviance from the null ANOVA model. As this result is not observed when assessing 

455 bivalve fauna, it is likely that ammonite occurrences are principally contributing to this effect. 

456 Depth zones were also evaluated for all organisms (Table 8). Only the proximal offshore 

457 supported a model other than the null, which reported mineralogy as a contributing factor; 

458 unusually, calcitic fauna are shown to have a reduced sampling probability compared to 

459 aragonitic.

460

461 Range Size

462 Cenomanian-Turonian

463 Box plots were generated on a log scale to show differences in mean range sizes between 

464 calcitic and aragonitic organisms (Fig. 6a). There is a visible difference in variability of range 

465 size between groupings, with calcitic fauna showing an average larger range than aragonitic. 

466 The Wilcoxon Mann Whitney test also showed a statistically significant difference between 

467 the range sizes for the two groups (p value = 0.00405), with a reported difference in median 

468 range size of 48,694 km2. As sample size varied between the groups, resampling measures were 

469 carried out to test the accuracy of these results. A randomized bootstrap with replacement 

470 calculating the difference between the means of range sizes was implemented 10,000 times in 
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471 R (Fig. 6c). Our recorded difference in the mean was shown to have an associated p value of 

472 0.0172, showing statistical significance.

473

474 Campanian

475 Box plots were generated to show differences in mean range sizes between early Campanian 

476 calcitic and aragonitic organisms (Fig. 6b). Calcitic bivalves show higher variability in mean 

477 range size than aragonitic bivalves. However, the Wilcoxon Mann Whitney test showed no 

478 statistically significant difference between the two groupings (p value = 0.504) with a recorded 

479 difference in median range size of 13,540 km2, and a randomized bootstrap (Fig. 6d) with 

480 replacement recovered an associated p value of 0.1527 (non-statistically significant).

481

482 Raw Diversity and SQS

483 Cenomanian-Turonian

484 Within the Cenomanian-Turonian, broadly similar patterns of diversity occur in all groups (Fig. 

485 7a,c) – peak diversity is within the distal offshore, with lowest values in the nearshore and 

486 basin center. Calcitic bivalves show proportionally enhanced diversity in the proximal offshore 

487 compared to the other faunal groups. These patterns closely align with the number of 

488 collections within each zone, but show limited similarity to zoned outcrop area.

489 Subsampled ammonite and calcitic bivalve diversity show a broadly similar pattern to their raw 

490 taxic diversity signals (Fig. 8a,e). The record of aragonitic bivalves (Fig. 8c) is too poor to 

491 resolve subsampled diversity for the basin center; however, a slight decline in subsampled 

492 generic richness exists in the proximal offshore. 

493

494 Campanian
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495 Calcitic bivalves and ammonites exhibit a similar pattern in diversity (Fig. 7b,d) although the 

496 latter show an increase in the proximal offshore. Aragonitic bivalve diversity has a similar peak 

497 in the proximal offshore but declines towards the basin center. None of these trends show 

498 similarity to the distribution of collections or outcrop area throughout the seaway. 

499 When subsampled (Fig. 8b,d,f), calcitic and aragonitic bivalves are most diverse within the 

500 proximal offshore, falling to relative lows within the distal offshore and basin center. 

501 Ammonites are most diverse in the nearshore, followed by a decline to a flat profile. 

502

503 DISCUSSION

504 Sampling probability and multiple logistic regression

505 Our results from estimations of sampling probability and subsequent multiple logistic 

506 regression suggest that aragonite bias may be present within distinct depth zones of the seaway 

507 during the Cenomanian-Turonian. Mineralogy has a strong and statistically significant impact 

508 on sampling probability within the proximal and distal offshore bathymetric zones, and shows 

509 the highest contribution to deviance from the null model. This is further supported by the fact 

510 that whilst all aragonitic taxa have lower sampling proportions overall, both aragonitic bivalves 

511 and ammonites disproportionally decrease in sampling probability within the proximal 

512 offshore compared to calcitic bivalves. Ammonites, whilst still showing reduced sampling 

513 probability compared to calcitic fauna, are more likely to be sampled than aragonitic bivalves; 

514 a potential explanation for this difference could be that aragonite dissolution acts differently 

515 upon ammonites compared to bivalves. Body sizes of ammonites and bivalves differ, with 

516 ammonites generally having larger forms (Jablonski, 1996). This has been known to influence 

517 preservation potential and the extent of aragonite dissolution: Wright et al. (2003) showed that 

518 ammonites are affected less severely than aragonitic bivalves by early stage aragonite 
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519 dissolution, often exhibiting poor preservation rather than complete removal. Our results have 

520 the potential to be partially related to this effect.

521 Aragonitic bivalves have lower absolute sampling probabilities in carbonate environments than 

522 in siliciclastic environments, supporting the results of Foote et al. (2015). However, when 

523 examining the proximal offshore zone, we can see that sampling probability within siliciclastic 

524 lithologies falls dramatically. As this zone records the largest difference in odds of sampling 

525 between calcitic and aragonitic taxa, it can be argued that aragonite bias can influence fauna 

526 within siliciclastic deposits in epicontinental seas, in contradiction to Foote et al. (2015). The 

527 absolute sampling proportions of calcitic bivalves remain relatively consistent (at about 2% of 

528 genera per collection) throughout the seaway until the basin center, where they increase 

529 dramatically within carbonates compared to siliciclastics. Foote et al. (2015) reported that 

530 calcitic organisms experienced higher sampling probabilities in carbonate-rich intervals, which 

531 is especially enhanced in limestones. As carbonates make up 93% of total sampling 

532 opportunities within this zone, our results align fairly closely with previous findings. Whilst 

533 Foote et al. (2015) singled out lithology as an important factor for aragonite dissolution, they 

534 did not investigate whether differences in grain size significantly influenced results. Within 

535 this study, sandstone and siltstone are consistently shown to have better odds at preserving 

536 aragonitic fauna than mudstone. This is unsurprising, considering that coarser, oxidized 

537 sediments are likely to contain lower quantities of organic matter than finer sediments, and thus 

538 provide less material for the microbial decay which ultimately controls the dissolution of 

539 aragonite within the taphonomically active zone (Cherns et al., 2008). However, siltstone 

540 appears to have higher odds than sandstone, potentially a reflection of increased quality of 

541 preservation in lower energy settings. It should be noted however that only a few models 

542 include both siltstone and sandstone and therefore allow for comparison of sampling 

543 probabilities.
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544 Potential ecological signals can also be parsed from the results reported here. Within the 

545 Cenomanian-Turonian dataset, odds of sampling chemosymbiont deposit feeders within the 

546 proximal offshore were higher than for other bivalves, forming a statistically significant part 

547 of the final model and accounting for the second highest deviance from the null model. 

548 Chemosymbiosis in bivalves occurs in a range of environments to cope with life in sulphide-

549 rich environments, typically at deep sea vents or in sediments at the oxic/anoxic interface 

550 (Cavanaugh, 1994). Combined with evidence for poor sampling probability of aragonitic fauna 

551 in siliciclastic lithologies, this lends credence to the likelihood of fluctuating benthic oxygen 

552 conditions within the proximal offshore, ideal for preferential aragonite dissolution. More 

553 broadly, several previous works have suggested that aragonite bias strongly influences 

554 perceived trophic communities within molluscan fauna, favouring preservation of specific life 

555 habits (Cherns et al., 2008; Cherns and Wright, 2009). Unfortunately, very few statistically 

556 significant life habit factors contribute to our final models (Fig. 5), and thus we cannot draw 

557 any conclusions regarding preservational shifts in trophic structure. In the basin center, 

558 ammonites are more likely to be sampled compared to other organisms. This confirms 

559 expectations of enhanced preservation within a predominantly anoxic water column, where 

560 dissolution and predation have reduced impact on the removal of fauna emplaced by pelagic 

561 fallout (Jordan et al., 2015).

562 Within the Campanian, there is a somewhat contradictory pattern. Multiple logistic regression 

563 results show that mineralogy only has a strong, statistically significant impact on relative 

564 sampling odds when assessing bivalves within the proximal and distal offshore bathymetric 

565 zones, with only the latter showing a strong deviation from the null model in ANOVA results. 

566 When ammonites are added, the odds of sampling aragonitic fauna are actually higher than that 

567 of calcitic organisms within the proximal offshore, and all other zones show no statistically 

568 significant contributions from mineralogy. This is reinforced when one considers the absolute 
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569 proportions of mineralogies sampled: ammonites exhibit the highest overall sampling 

570 probability between fauna. A potential cause of this contradiction is preferential sampling bias. 

571 Ease of collecting and human interest can result in skewed sampling effort and intensity, 

572 potentially inflating (Foote and Sepkoski, 1999) or reducing (Lloyd and Friedman, 2013) the 

573 published records of certain taxa, locations, and time periods above others. The WIS has long 

574 been known for its abundance and diversity of ammonite fauna, and consequently ammonites 

575 have been used for systematic biostratigraphic correlation since the 1930s (Stephenson and 

576 Reeside Jr., 1938). An intensive effort to collect ammonites for stratigraphic purposes was 

577 carried out by a selection of workers through the latter half of the 20th century to the present 

578 day (Scott and Cobban, 1959; Gill and Cobban, 1973; Cobban and Hook, 1984; Cobban et al., 

579 2006; Merewether et al., 2011). Consequently, it is likely that records for biostratigraphically 

580 important organisms have been over-inflated compared to other molluscs and between 

581 localities. Koch (1978) showed by comparing previously existing collections and newly 

582 collected records for the upper Cenomanian Sciponoceras gracile zone (now the Vascoceras 

583 diartianum and Euomphaloceras septemseriatum zones; Cobban et al, 2006) that ammonites 

584 were better studied and more commonly reported than bivalve fauna. Parts of these collections 

585 have made up the majority of the publicly available records of fossil occurrences within the 

586 Western Interior, which are utilized in this study. As such, it is possible that ammonites are 

587 over-represented in the early Campanian dataset and are skewing perceived results. However, 

588 it is still possible to suggest that a suppressed expression of spatial aragonite bias occurs in the 

589 distal offshore, albeit at reduced levels in comparison to the Cenomanian-Turonian interval.

590

591 Range size

592 Range size results reported a difference between calcitic and aragonitic bivalves across the two 

593 time intervals studied, with aragonitic fauna showing a significantly smaller range size during 
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594 the Cenomanian-Turonian but not the Campanian. This variation is also expressed spatially 

595 (Fig. 9). Within the Cenomanian-Turonian time slice, aragonitic geographic ranges (Fig. 9a) 

596 are generally restricted to the western and northern edges of the seaway in comparison to 

597 calcitic geographic ranges, which extend further to the center of the basin, as well as the east 

598 and south (Fig. 9c). This same pattern is slightly different in the early Campanian interval (Fig. 

599 9b,d); whilst aragonitic fauna still show a limited range, the difference between both bivalve 

600 groups is less pronounced. This pattern also matches with the distribution of carbonate 

601 deposition within the WIS: the Cenomanian-Turonian interval experienced widespread 

602 carbonate sedimentation – in the form of the Greenhorn Limestone Formation – in the basin 

603 center (Miall et al., 2008), whilst deposition in the basin center transitioned from limestones of 

604 the Niobrara Formation to the siliciclastic mudstones of the Pierre Shale in the early Campanian 

605 (McGookey et al., 1972; Da Gama et al., 2014). As our results confirm that carbonate 

606 environments can exacerbate the effects of aragonite dissolution, it is possible that the 

607 differences between the Cenomanian-Turonian and the Campanian are partially driven by the 

608 enhanced effects of aragonite bias in carbonate-rich environments, resulting in a lowered 

609 sampling probability within carbonate-dominated localities.

610

611 Occurrence and Diversity Results

612 Overall, there is some evidence of aragonite dissolution influencing patterns of pure 

613 occurrences, taxonomic and subsampled diversity for aragonitic fauna, as previously 

614 hypothesized. In the Cenomanian-Turonian, aragonite bias is most pronounced within the 

615 proximal offshore bathymetric zone, with a lesser impact within the distal offshore zone. 

616 Whilst all fauna show a close correlation to collection counts for depth zones, both aragonitic 

617 and calcitic fauna deviate from this correlation in the proximal offshore zone, recording lower 

618 raw occurrences and diversity. The same is broadly observed in the Campanian: maximum 
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619 disparity of sampling probability between calcitic and aragonitic fauna is observed within the 

620 distal offshore zone, where aragonitic occurrences and raw taxic diversity show a noticeable 

621 decline and subsequent deviation from sampling proxies. Foote et al. (2015) reported similar 

622 results when comparing sampling-corrected results to ones that previously displayed the 

623 proportion of aragonitic taxa (Crampton et al., 2006), and concluded that similarities existed 

624 between sampling probabilities and relative proportions of aragonitic species.

625 Despite the potential relationships discussed above, we cannot report conclusive evidence for 

626 aragonite bias influencing the sampled diversity of molluscan fauna within the WIS. This aligns 

627 with other recent studies showing that despite evidence of widespread aragonite dissolution 

628 during early shallow diagenesis, perceived diversity is not largely affected by these processes 

629 (Behrensmeyer et al., 2005; Kidwell, 2005; Crampton et al., 2006; Hsieh et al., 2019).  Hence, 

630 we must additionally look at external influences which might capture, enhance, or control the 

631 distribution of aragonitic faunas that would otherwise be lost to preferential dissolution.

632 Known human influences have potentially contributed to the suppression of aragonite bias on 

633 a spatial scale. Whilst the extent to which aragonite dissolution may have influenced our 

634 perceived record of molluscan diversity within the WIS is unclear, it is apparent that these 

635 records closely correlate with established sampling proxies. Results of Spearmans-rank 

636 correlation tests of occurrences and raw taxic diversity against sampling proxies for distance-

637 from-paleoshoreline zones (Table 9) correlate strongly and significantly. It is clear that broader 

638 scale sampling trends related to collector effort strongly influence the pattern of faunal 

639 distribution across the seaway, potentially overwriting the effects of aragonite dissolution.

640 Whilst there have been many cases of preferential aragonite dissolution within local studies, 

641 aragonitic molluscan fauna are relatively well represented in the global fossil record (Harper, 

642 1998). This paradox suggests that processes must occur which capture records of molluscan 

643 fauna at a higher frequency than they are capable of being destroyed. Cherns et al. (2008, 2011) 

Page 26 of 74

Cambridge University Press

Paleobiology



For Peer Review

27

644 describe “Taphonomic Windows” as events in the fossil record which capture an unbiased view 

645 of aragonitic faunas which have escaped preferential dissolution, and detail numerous 

646 examples that may have operated within the WIS. One such window that is prevalent within 

647 the WIS are concretions, sedimentary mineral masses of varying chemical composition that 

648 often form at shallow burial depths early in diagenesis when mineral cement precipitates 

649 locally during lithification (Berner, 1968; McCoy et al., 2015). These have the potential to 

650 preserve three-dimensional fossilized remains, often in exquisite detail (Dean et al., 2015; Korn 

651 and Pagnac, 2017). Concretions are also a characteristic mode of molluscan occurrences within 

652 the WIS, with fossil-bearing concretions found commonly throughout the seaway (Landman 

653 and Klofak, 2012); as such, they could further contribute to a potential anthropogenic bias in 

654 that they provide easily spotted locations to find fauna in otherwise barren strata (such as the 

655 Pierre Shale), skewing collection intensity between localities with concretions and those 

656 without. However, only ~3% of USGS collections were obtained by selective collecting (Koch, 

657 1980), and as USGS records make up ~55% of our finished dataset this suggests that sampling 

658 intensity bias might be partially mitigated. Sediment accumulation rate could exert a large 

659 influence on the potential for preferential aragonite dissolution to affect spatial zones of the sea 

660 floor. If sediment accumulation rates were low, fauna would remain within the TAZ for an 

661 extended period of time, and thus are more likely to be removed through physical reworking, 

662 bioerosion and enhanced dissolution (Cherns et al., 2011). In contrast, if sediment 

663 accumulation rates were high, fauna are likely to have been rapidly buried and thus have 

664 escaped into the sub-TAZ region, where vulnerable bioclasts are likely to be stabilized by 

665 shallow burial diagenesis (Melim et al., 2002, 2004). Sediment accumulation rates within the 

666 WIS varied both longitudinally within a stratigraphic interval (with higher sediment 

667 accumulation rates towards the western paleoshoreline) and with increased bathymetry in a 

668 single location (Arthur and Sageman, 2005): accounting for this potential influence is 
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669 problematic, and the extent of its effects is ambiguous. The result of these factors is a potential 

670 suppression of the spatial influence of aragonite dissolution bias on recorded faunal diversity 

671 within the WIS.

672

673 Spatial Scale and Influence of Bias

674 The issue of scale is key to understanding the spatial impact of aragonite dissolution (Kosnik 

675 et al., 2011). Foote et al. (2015) recorded preferential aragonite bias within carbonate-rich 

676 environments on the regional spatial (~106 km2) and stage-level temporal (1-10 Myr) scales. 

677 However, others (Behrensmeyer et al, 2005; Kidwell, 2005; Kiessling et al., 2008; Kosnik et 

678 al, 2011) using global-scale data have reported negligible influence of shell mineralogy on 

679 temporal trends or frequency of occurrences. Foote et al. (2015) reported three key differences 

680 between previous studies and their work: higher taxonomic level of occurrences, larger time 

681 bins, and the use of global data. These factors were inferred to “even out” spatial and temporal 

682 variations in sampling, mitigating the influence and effect of locally variable biases inherent to 

683 the fossil record. Foote et al. (2015) further suggested that as their taxonomic and temporal 

684 scales were consistent with previously published work, an increase in spatial scale may prove 

685 the most influential factor on demoting the influence of aragonite dissolution.

686 This result can be easily translated into the spatial expression of aragonite bias by comparing 

687 its potential on alpha (within-site), beta (between-site) and gamma (global) diversity. At the 

688 alpha level, the impact of aragonite bias on a single species will be at its most severe, 

689 particularly within single-bed assemblages (Wright et al, 2003; Bush and Bambach, 2004; 

690 Cherns et al 2008, 2011). However, at gamma levels of diversity, the probability of not 

691 recording an individual drops substantially due to the number of possible localities to sample 

692 from, where various taphonomic windows may result in aragonite preservation. As such, an 

693 increased number of localities in a spatial setting are likely to partially obscure localized 
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694 aragonite dissolution. As we recorded an impact on zoned sampling probabilities and range 

695 size of aragonitic fauna in the WIS, but could not conclusively prove an influence on total 

696 diversity estimates, our data support the suggestions of Foote et al. (2015) that spatial scale is 

697 a dominant factor on the severity of aragonite bias. 

698 Whilst unlikely to influence diversity on a global scale, this study has shown that preferential 

699 aragonite dissolution has the capacity to govern the sampling probability of a species in 

700 geographic space, and thus can influence the ‘variation’ definition of beta diversity (Anderson 

701 et al., 2011). As the preferential dissolution of aragonite is a process that is exacerbated by 

702 certain environments (Foote et al. 2015), its influence will impact localities with different 

703 environmental conditions to differing extents – a species will be lost at one site and recorded 

704 at another. Our results confirm this, showing aragonite bias has an effect on observed diversity 

705 between locations, at least during times of widespread carbonate deposition.

706 Consequently, when looking at the spatial signal of aragonite dissolution as a whole, we can 

707 see a sliding scale of influence: strong, environmentally dependent impact on alpha diversity; 

708 a potentially large influence on beta diversity; and a negligible impact on gamma diversity. 

709 Bush et al. (2004) grouped biases affecting spatially organized biodiversity in similar alpha, 

710 beta and gamma levels, with alpha biases influencing within site diversity and beta and gamma 

711 arising from failure to sample all available habitats or environments within a region. Whilst it 

712 was noted in this study that taphonomic effects were not included in this definition, this system 

713 can be modified in the light of our results. Aragonite bias, whilst operating at an alpha bias 

714 (local) level, evidently has the capacity to systematically influence estimates of beta diversity. 

715 As such, the influence of some taphonomic biases may be dependent on the spatial scale at 

716 which they are observed. This is an important consideration for studies of the spatial 

717 distribution of bias in the fossil record (Barnosky et al., 2005; Vilhena and Smith, 2013; Benson 

718 et al., 2016; Close et al., 2017), and for paleobiogeographic studies in general. 
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719

720 CONCLUSIONS

721 1) A multifaceted approach shows that preferential aragonite dissolution is spatially 

722 variable and impacts on the relative likelihood, absolute sampling probabilities, and 

723 range sizes of aragonitic organisms within the Cretaceous Western Interior Seaway of 

724 North America for a time interval that straddles the Cenomanian-Turonian boundary. 

725 A similar but reduced effect is additionally observed within an early Campanian time 

726 interval. A combination of depositional lithology (a limestone dominated basin within 

727 the Cenomanian-Turonian compared to a more siliciclastic setting in the early 

728 Campanian) and an anoxic basin center are hypothesized as drivers for this effect.

729 2) Carbonate environments enhance the effects of aragonite dissolution and the 

730 preservation of calcitic organisms, as has been previously demonstrated. However, in 

731 contrast to previous studies, siliciclastic environments are also shown to be influenced 

732 by preferential aragonite dissolution.

733 3) Whilst similarities are observed between faunal distribution and absolute sampling 

734 probabilities, we cannot conclusively say that aragonite dissolution has influenced 

735 perceived diversity of molluscs within the Western Interior Seaway. “Taphonomic 

736 windows” act to preserve records of organisms that would otherwise be lost. Other 

737 anthropogenic and geologic biases appear to have a more obvious effect on the 

738 molluscan record, and likely mask the influence of aragonite dissolution.

739 4) Whilst aragonite bias can be thought of as an “alpha bias”, results show it could have a 

740 systematic and severe impact on beta diversity. This suggests that taphonomic biases 

741 can act differently at different scales in the spatial realm. 

742
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982 Figure and Table Captions

983
984 Fig. 1.

985
986 Diagram showing potential model of spatial aragonite bias within the WIS. Within the outer shelf, 

987 preferential dissolution of aragonitic fauna is common, which has the potential to be expressed 

988 spatially. Within the basin center, anoxia limits benthic organism development, but allows for 

989 preservation of aragonitic material. Modified after Cherns et al. (2011). 

990
991 Fig. 2.

992
993 Paleogeographic zoned maps of the WIS used in this study. Depth-based zones are designated as 

994 nearshore, proximal offshore, distal offshore and basin center (Fig. 1); A. Paleobathymetric map of 

995 the Cenomanian-Turonian; B. Paleobathymetric map of the early Campanian.
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996
997 Fig. 3.

998
999 Diagram showing potential model of apparent range size reduction due to spatially variable aragonite 

1000 preservation. Assuming that calcitic and aragonitic species of bivalve were both living at four separate 

1001 localities but aragonitic dissolution strongly influenced one of those locations (A), the resulting 

1002 convex hull for the aragonitic fauna drawn from surviving fossil occurrences would likely be smaller 

1003 than that of the calcitic organism (B).

1004
1005 Fig. 4.

1006
1007 Plots of generic level M2 sampling probabilities for the Cenomanian-Turonian (A, C, E, G) and lower 

1008 Campanian (B, D, F, H) time slices across depth zones, split into carbonate and siliciclastic sampling 

1009 opportunities. All results are plotted with percentage of carbonate collections per depth zone A. 

1010 Cenomanian-Turonian generic level sampling probability, plotted with percentage of carbonate 

1011 collections per depth zone; B. lower Campanian generic level sampling probability, plotted with 

1012 percentage of carbonate collections per depth zone; C. Cenomanian-Turonian ammonite sampling 

1013 probability; D. lower Campanian ammonite sampling probability; E. Cenomanian-Turonian aragonitic 

1014 bivalve sampling probability; F. lower Campanian aragonitic bivalve sampling probability; E. 

1015 Cenomanian-Turonian calcitic bivalve sampling probability; F. lower Campanian calcitic bivalve 

1016 sampling probability.

1017
1018 Fig. 5

1019
1020 Graph summarizing multiple logistic regression model results (T1-T8 = Tables 1-8). Final models are 

1021 presented within columns, whereas factors are presented along rows for those models. Results are 

1022 presented as either green (comparatively positive odds of sampling compared to reference factor), red 

1023 (comparatively negative odds of sampling compared to reference factor), light grey (factor not 

1024 statistically significant) and dark grey (factor not included in the final model). The following factors 

1025 are used as a baseline for comparison: Mineralogy = aragonite; lithology = mudstone, lithology with 

1026 mineralogy = aragonite:mudstone; zone = Basin Center (BC); diet = carnivore. Note that the 

1027 magnitude of regression coefficients is not presented within this graph. NS: Near Shore; POS: 

1028 Proximal Offshore; DOS: Distal offshore; BC: Basin Center.

1029
1030 Fig. 6. 

1031
1032 Range size plots for the Cenomanian-Turonian and lower Campanian. A. Cenomanian-Turonian box 

1033 plots of range size for both aragonitic bivalves and calcitic bialves on log scale; B. lower Campanian 

1034 box plots of range size for both aragonitic bivalves and calcitic bivalves on log scale; C. Randomized 

1035 bootstrap for Cenomanian-Turonian mean range sizes – recorded difference in the mean is shown to 

1036 be statistically significant; D. Randomized bootstrap for lower Campanian mean range sizes – 

1037 recorded difference in the mean is not shown to be statistically significant.

1038
1039 Fig. 7.

1040
1041 Plots of generic level diversity plots for the Cenomanian-Turonian and lower Campanian within depth 

1042 zones, plotted with number of collections and outcrop area. A. Generic diversity and number of 

1043 collections for the Cenomanian-Turonian; B. Generic diversity and number of collections for the 

1044 lower Campanian; C. Generic diversity and outcrop area for the Cenomanian-Turonian; D. Generic 

1045 diversity and outcrop area for the lower Campanian.

1046
1047 Fig. 8.

1048
1049 Plots of generic level SQS results for depth zones in the Cenomanian-Turonian and lower Campanian, 

1050 set at 0.4, 0.5 and 0.6 quora. A. SQS results for ammonites in the Cenomanian-Turonian; B. SQS 
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1051 results for ammonites in the lower Campanian; C. SQS results for aragonitic bivalves in the 

1052 Cenomanian-Turonian; D. SQS results for aragonitic bivalves in the lower Campanian; E. SQS results 

1053 for calcitic bivalves in the Cenomanian-Turonian; F. SQS results for calcitic bivalves in the lower 

1054 Campanian.

1055
1056 Fig. 9.

1057
1058 Paleogeographic maps shown with range sizes of calcitic and aragonitic bivalves for both time slices. 

1059 A. Aragonitic bivalve range sizes for the Cenomanian-Turonian; B. Aragonitic bivalve range sizes for 

1060 the lower Campanian; C. Calcitic bivalve range sizes for the Cenomanian-Turonian; D. Calcitic 

1061 bivalve range sizes for the lower Campanian.

1062
1063 Table 1.

1064
1065 Table for Multiple Logistic Regression results for all bivalves within the Cenomanian-Turonian 

1066 across the whole seaway, using model with lowest AIC score. M - Mineralogy; D - Diet; L - 

1067 Lithology; Z – depth zone.

1068 Table 2.

1069
1070 Table for Multiple Logistic Regression results for all bivalves within the Cenomanian-Turonian for 

1071 each depth zone, using models with lowest AIC scores. M - Mineralogy; D - Diet; L – Lithology.

1072 Table 3.

1073
1074 Table for Multiple Logistic Regression results for all organisms (including ammonites) within the 

1075 Cenomanian-Turonian across the whole seaway, using model with lowest AIC score. M - Mineralogy; 

1076 L - Lithology; Z – depth zone.

1077
1078 Table 4.

1079
1080 Table for Multiple Logistic Regression results for all organisms (including ammonites) within the 

1081 Cenomanian-Turonian for each depth zone, using models with lowest AIC scores. M - Mineralogy; L 

1082 – Lithology.

1083
1084 Table 5.

1085
1086 Table for Multiple Logistic Regression results for all bivalves within the lower Campanian across the 

1087 whole seaway, using model with lowest AIC score. M - Mineralogy; D - Diet; L - Lithology; Z – 

1088 depth zone. 

1089
1090 Table 6.

1091
1092 Table for Multiple Logistic Regression results for all bivalves within the lower Campanian for each 

1093 depth zone, using models with lowest AIC scores. M - Mineralogy; D - Diet; L - Lithology; Z – depth 
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1104 Table for Multiple Logistic Regression results for all organisms (including ammonites) within the lower 

1105 Campanian for each depth zone, using models with lowest AIC scores. M - Mineralogy; L – Lithology.

1106
1107 Table 9.

1108
1109 Spearman’s rank correlations between generic diversity of faunal groups and various sampling proxies 

1110 for distance-from-paleoshoreline zones within the Cenomanian-Turonian and lower Campanian.
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Figure 1. Diagram showing potential model of spatial aragonite bias within the WIS. Within the outer shelf, 

preferential dissolution of aragonitic fauna is common, which has the potential to be expressed spatially. 

Within the basin center, anoxia limits benthic organism development, but allows for preservation of 

aragonitic material. Modified after Cherns et al. (2011). 

Page 39 of 74

Cambridge University Press

Paleobiology



For Peer Review

 

Figure 2. Paleogeographic zoned maps of the WIS used in this study. Depth-based zones are designated as 

nearshore, proximal offshore, distal offshore and basin center (Fig. 1); A. Paleobathymetric map of the 

Cenomanian-Turonian; B. Paleobathymetric map of the early Campanian. 
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Figure 3. Diagram showing potential model of apparent range size reduction due to spatially variable 

aragonite preservation. Assuming that calcitic and aragonitic species of bivalve were both living at four 

separate localities but aragonitic dissolution strongly influenced one of those locations (A), the resulting 

convex hull for the aragonitic fauna drawn from surviving fossil occurrences would likely be smaller than 

that of the calcitic organism (B). 
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Plots of generic level M2 sampling probabilities for the Cenomanian-Turonian (A, C, E, G) and lower 

Campanian (B, D, F, H) time slices across depth zones, split into carbonate and siliciclastic sampling 

opportunities. All results are plotted with percentage of carbonate collections per depth zone A. 

Cenomanian-Turonian generic level sampling probability, plotted with percentage of carbonate collections 

per depth zone; B. lower Campanian generic level sampling probability, plotted with percentage of carbonate 

collections per depth zone; C. Cenomanian-Turonian ammonite sampling probability; D. lower Campanian 

ammonite sampling probability; E. Cenomanian-Turonian aragonitic bivalve sampling probability; F. lower 

Campanian aragonitic bivalve sampling probability; E. Cenomanian-Turonian calcitic bivalve sampling 

probability; F. lower Campanian calcitic bivalve sampling probability. 
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Graph summarizing multiple logistic regression model results (T1-T8 = Tables 1-8). Final models are 

presented within columns, whereas factors are presented along rows for those models. Results are 

presented as either green (comparatively positive odds of sampling compared to reference factor), red 

(comparatively negative odds of sampling compared to reference factor), light grey (factor not statistically 

significant) and dark grey (factor not included in the final model). The following factors are used as a 

baseline for comparison: Mineralogy = aragonite; lithology = mudstone, lithology with mineralogy = 

aragonite:mudstone; zone = Basin Center (BC); diet = carnivore. Note that the magnitude of regression 

coefficients is not presented within this graph. NS: Near Shore; POS: Proximal Offshore; DOS: Distal 

offshore; BC: Basin Center. 
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Range size plots for the Cenomanian-Turonian and lower Campanian. A. Cenomanian-Turonian box plots of 

range size for both aragonitic bivalves and calcitic bialves on log scale; B. lower Campanian box plots of 

range size for both aragonitic bivalves and calcitic bivalves on log scale; C. Randomized bootstrap for 

Cenomanian-Turonian mean range sizes – recorded difference in the mean is shown to be statistically 

significant; D. Randomized bootstrap for lower Campanian mean range sizes – recorded difference in the 

mean is not shown to be statistically significant. 
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Plots of generic level diversity plots for the Cenomanian-Turonian and lower Campanian within depth zones, 

plotted with number of collections and outcrop area. A. Generic diversity and number of collections for the 

Cenomanian-Turonian; B. Generic diversity and number of collections for the lower Campanian; C. Generic 

diversity and outcrop area for the Cenomanian-Turonian; D. Generic diversity and outcrop area for the lower 

Campanian. 
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Plots of generic level SQS results for depth zones in the Cenomanian-Turonian and lower Campanian, set at 

0.4, 0.5 and 0.6 quora. A. SQS results for ammonites in the Cenomanian-Turonian; B. SQS results for 

ammonites in the lower Campanian; C. SQS results for aragonitic bivalves in the Cenomanian-Turonian; D. 

SQS results for aragonitic bivalves in the lower Campanian; E. SQS results for calcitic bivalves in the 

Cenomanian-Turonian; F. SQS results for calcitic bivalves in the lower Campanian. 
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Paleogeographic maps shown with range sizes of calcitic and aragonitic bivalves for both time slices. A. 

Aragonitic bivalve range sizes for the Cenomanian-Turonian; B. Aragonitic bivalve range sizes for the lower 

Campanian; C. Calcitic bivalve range sizes for the Cenomanian-Turonian; D. Calcitic bivalve range sizes for 

the lower Campanian. 
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Final Model AIC Factor Regression coefficient Standard error
M + D + L + Z + M:L 22367* M-Calcite 1.516 0.080

D-Chemosymbiont deposit feeder 1.353 0.239
L-Sandstone 0.672 0.115
L-Silt 0.759 0.362
M-Calcite:L-Limestone 1.338 0.192
L-Limestone -1.415 0.184
DOS -0.410 0.082
NS -0.754 0.114
POS -0.684 0.089
D-Herbivore -1.870 1.022
M-Calcite:L-Calcarenite 1.146 0.611

Table for Multiple Logistic Regression results for all bivalves within the Cenomanian-Turonian across the whole seaway, using model with lowest AIC score. M - Mineralogy; D - Diet; L - Lithology; Z – depth zone.
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p-value
< 2e-16 ***
1.45e-08 ***
5.39e-09 ***
0.0359 * 
3.35e-12 ***
1.49e-14 ***
6.70e-07 ***
4.30e-11 ***
1.10e-14 ***
 0.0673 .  
0.0605 .  

Table for Multiple Logistic Regression results for all bivalves within the Cenomanian-Turonian across the whole seaway, using model with lowest AIC score. M - Mineralogy; D - Diet; L - Lithology; Z – depth zone.
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Data Final Model AIC Factor

Near Shore
M + L 1808.7 M-Calcite

L-Sandstone

Proximal Offshore

M + D + L + M:L 7809.2 M-Calcite
D-Chemosymbiont deposit feeder
L-Marl
M-Calcite:L-Limestone
L-Limestone
M-Calcite:L-Marl

Distal Offshore

M + L + D + M:L 10768 M-Calcite
L-Sandstone
L-Silt
D-Chemosymbiont deposit feeder
M-Calcite:L-Limestone
L-Limestone

Basin Center
M + L + D 1857.1 L-Calcarenite

L-Calcareous Shale
L-Marl

Table for Multiple Logistic Regression results for all bivalves within the Cenomanian-Turonian for each depth zone, using models with lowest AIC scores. M - Mineralogy; D - Diet; L – Lithology.
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Regression coefficient Standard error p-value
0.626 0.176 0.000372 ***
0.571 0.166 0.000593 ***
1.818 0.134 < 2e-16 ***
1.917 0.449 1.94e-05 ***
3.125 0.539 6.89e-09 ***
1.390 0.438 0.00149 ** 

-1.358 0.422 0.00131 ** 
-1.775 0.808 0.02804 *
1.416 0.111 < 2e-16 ***
0.978 0.152 1.18e-10 ***
1.684 0.595 0.004671 ** 
1.051 0.293 0.000335 ***
1.222 0.226 6.08e-08 ***

-1.248 0.211 3.25e-09 ***
1.777 0.582 0.00225 ** 
1.826 0.371 8.47e-07 ***
1.864 0.489 0.00014 ***

Table for Multiple Logistic Regression results for all bivalves within the Cenomanian-Turonian for each depth zone, using models with lowest AIC scores. M - Mineralogy; D - Diet; L – Lithology.
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Final Model AIC Factor Regression coefficient Standard error
M + Z + L + M:L 46464* M-Calcite 0.741 0.044

L-Conglomerate 1.495 0.324
L-Marl 0.593 0.174
M-Calcite:L-Calcarenite 1.269 0.319
M-Calcite:L-Calcareous Shale 2.290 0.280
M-Calcite:L-Limestone 0.202 0.072
M-Calcite:L-Sandstone 0.595 0.095
DOS -0.530 0.050
NS -0.700 0.076
POS -0.755 0.056
L-Calcarenite -0.959 0.260
L-Calcareous Shale -1.561 0.253
L-Limestone -0.288 0.050
L-Sandstone -0.152 0.067
M-Calcite:L-Conglomerate -1.857 1.057

Table for Multiple Logistic Regression for all organisms (including ammonites) within the Cenomanian-Turonian across the whole seaway, using model with lowest AIC score. M - Mineralogy; L - Lithology; Z – depth zone.
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p-value
< 2e-16 ***
3.92e-06 ***
0.000654 ***
7.10e-05 ***
3.03e-16 ***
0.004996 ** 
4.31e-10 ***
< 2e-16 ***
< 2e-16 ***
< 2e-16 ***
0.000227 ***
6.77e-10 ***
6.82e-09 ***
0.024007 *  
0.079016 .  

Table for Multiple Logistic Regression for all organisms (including ammonites) within the Cenomanian-Turonian across the whole seaway, using model with lowest AIC score. M - Mineralogy; L - Lithology; Z – depth zone.
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Table for Multiple Logistic Regression for all organisms (including ammonites) within the Cenomanian-Turonian across the whole seaway, using model with lowest AIC score. M - Mineralogy; L - Lithology; Z – depth zone.
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Data Final Model AIC Factor Regression coefficient
Near Shore M 3563.3 M-Calcite 0.443

Proximal Offshore

M + L + M:L 14954* M-Calcite 0.942
L-Conglomerate 1.553
L-Marl 2.046
M-Calcite:L-Calcareous Shale 1.900
M-Calcite:L-Sandstone 0.368
L-Calcareous Shale -1.765
L-Sandstone -0.261
L-Limestone -0.203
M-Calcite:L-Conglomerate -2.057

Distal Offshore

M + L + M:L 21160* M-Calcite 0.701
L-Marl 0.822
M-Calcite:L-Calcarenite 1.639
M-Calcite:L-Calcareous Shale 1.842
M-Calcite:L-Limestone 0.287
M-Calcite:L-Sandstone 0.849
L-Calcarenite -1.530
L-Calcareous Shale -1.651
L-Limestone -0.313
M-Calcite:L-Marl -1.747
M-Calcite:L-Silt 1.074

Basin Center

M + L + M:L 6692.3* L-Marl -2.270
M-Calcite:L-Calcarenite 3.536
M-Calcite:L-Calcareous Shale 3.479
M-Calcite:L-Limestone 0.868
M-Calcite:L-Marl 4.135

Table for Multiple Logistic Regression results for all organisms (including ammonites) within the Cenomanian-Turonian for each depth zone, using models with lowest AIC scores. M - Mineralogy; L – Lithology.
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Standard error p-value
0.114 9.92e-05 ***
0.070 < 2e-16 ***
0.325 1.79e-06 ***
0.367 2.47e-08 ***
0.636 0.00281 ** 
0.153 0.01635 *  
0.578 0.00224 ** 
0.108 0.01584 *  
0.108 0.06071 .  
1.059 0.05197 . 
0.064 < 2e-16 ***
0.235 0.000475 ***
0.583 0.004940 ** 
0.657 0.005042 ** 
0.105 0.006111 ** 
0.141 1.60e-09 ***
0.502 0.002308 ** 
0.579 0.004370 ** 
0.067 3.15e-06 ***
0.750 0.019823 *  
0.588 0.067947 .  
1.011 0.024660 *  
1.167 0.002442 ** 
0.507 6.53e-12 ***
0.376 0.021101 *  
1.123 0.000231 ***

Table for Multiple Logistic Regression results for all organisms (including ammonites) within the Cenomanian-Turonian for each depth zone, using models with lowest AIC scores. M - Mineralogy; L – Lithology.
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Final Model AIC Factor Regression coefficient Standard error
M + L + M:L 7063.9* M-Calcite 0.767 0.115

L-Sandstone 0.594 0.168
M-Calcite:L-Limestone 1.292 0.538
M-Calcite:L-Sandstone -0.496 0.209
M-Calcite:L-Siltstone 1.838 1.044

Table for Multiple Logistic Regression results for all bivalves within the lower Campanian across the whole seaway, using model with lowest AIC score. M - Mineralogy; D - Diet; L - Lithology; Z – depth zone. 
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p-value
2.41e-11 ***
0.00041 ***
0.01625 *  
 0.01781 *  
 0.07825 .  

Table for Multiple Logistic Regression results for all bivalves within the lower Campanian across the whole seaway, using model with lowest AIC score. M - Mineralogy; D - Diet; L - Lithology; Z – depth zone. 
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Data Final Model AIC Factor Regression coefficient
Near Shore L 886.47 N/A N/A

Proximal Offshore
M + L 1603.9 M-Calcite 0.808

L-Calcareous Shale 0.994
L-Limestone 0.687

Distal Offshore
M + L + M:L 3420.6* M-Calcite 1.145

L-Sandstone 0.765
M-Calcite:L-Sandstone -0.709

Basin Center L + D 1158.2 L-Calcareous Shale 0.812

Table for Multiple Logistic Regression results for all bivalves within the lower Campanian for each depth zone, using models with lowest AIC scores. M - Mineralogy; D - Diet; L - Lithology; Z – depth zone. 
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Standard error p-value
N/A N/A

0.184 1.08e-05 ***
0.467 0.03336 *  
0.247 0.00545 ** 
0.169 1.41e-11 ***
0.260 0.00332 ** 
0.322 0.02768 *  
0.222 0.000259 ***

Table for Multiple Logistic Regression results for all bivalves within the lower Campanian for each depth zone, using models with lowest AIC scores. M - Mineralogy; D - Diet; L - Lithology; Z – depth zone. 
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Table for Multiple Logistic Regression results for all bivalves within the lower Campanian for each depth zone, using models with lowest AIC scores. M - Mineralogy; D - Diet; L - Lithology; Z – depth zone. 
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Final Model AIC Factor Regression coefficient Standard error p-value
Z + M 16712 DOS -0.323 0.067 1.61e-06 ***

NS -0.203 0.095 0.033311 *  
POS -0.281 0.078 0.000307 ***
M-Calcite -0.146 0.054 0.006599 ** 

Table for Multiple Logistic Regression results for all organisms (including ammonites) within the lower Campanian across the whole seaway, using model with lowest AIC score. M - Mineralogy; L - Lithology; Z – depth zone. 
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Table for Multiple Logistic Regression results for all organisms (including ammonites) within the lower Campanian across the whole seaway, using model with lowest AIC score. M - Mineralogy; L - Lithology; Z – depth zone. 
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Table for Multiple Logistic Regression results for all organisms (including ammonites) within the lower Campanian across the whole seaway, using model with lowest AIC score. M - Mineralogy; L - Lithology; Z – depth zone. 
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Data Final Model AIC Factor Regression coefficient Standard error
Near Shore Rcoll ~ 1 1747.1 N/A N/A N/A

Proximal Offshore M 3683 M-Calcite -0.307 0.117
Distal Offshore Rcoll ~ 1 8319.3 N/A N/A N/A

Basin Center L + M + L:M 1151.9* N/A N/A N/A

Table for Multiple Logistic Regression results for all organisms (including ammonites) within the lower Campanian for each depth zone, using models with lowest AIC scores. M - Mineralogy; L – Lithology.
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p-value
N/A

0.00838 ** 
N/A
N/A

Table for Multiple Logistic Regression results for all organisms (including ammonites) within the lower Campanian for each depth zone, using models with lowest AIC scores. M - Mineralogy; L – Lithology.
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Table for Multiple Logistic Regression results for all organisms (including ammonites) within the lower Campanian for each depth zone, using models with lowest AIC scores. M - Mineralogy; L – Lithology.
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DISTANCE Correlation
Spearman's

Rho
CE

N
O

M
AN

IA
N

-T
U

RO
N

IA
N AMMONITES

Outcrop Area
Ammonite occurrences vs. Outcrop Area 0.475
Ammonite raw diversity vs. Outcrop Area 0.704

Collections
Ammonite occurrences vs. Collections 0.885
Ammonite raw diversity vs. Collections 0.732

ARAG. BIVALVES
Outcrop Area

Aragonitic bivalve occurrences vs. Outcrop Area 0.634
Aragonitic bivalve raw diversity vs. Outcrop Area 0.640

Collections
Aragonitic bivalve occurrences vs. Collections 0.568
Aragonitic bivalve raw diversity vs. Collections 0.502

CALC. BIVALVES
Outcrop Area

Calcitic bivalve occurrences vs. Outcrop Area 0.534
Calcitic bivalve raw diversity vs. Outcrop Area 0.678

Collections
Calcitic bivalve occurrences vs. Collections 0.904
Calcitic bivalve raw diversity vs. Collections 0.738

LO
W

ER
 C

AM
PA

N
IA

N

AMMONITES
Outcrop Area

Ammonite occurrences vs. Outcrop Area 0.221
Ammonite raw diversity vs. Outcrop Area 0.343

Collections
Ammonite occurrences vs. Collections 0.970
Ammonite raw diversity vs. Collections 0.727

ARAG. BIVALVES
Outcrop Area

Aragonitic bivalve occurrences vs. Outcrop Area 0.473
Aragonitic bivalve raw diversity vs. Outcrop Area 0.404

Collections
Aragonitic bivalve occurrences vs. Collections 0.822
Aragonitic bivalve raw diversity vs. Collections 0.759

CALC. BIVALVES
Outcrop Area

Calcitic bivalve occurrences vs. Outcrop Area 0.056
Calcitic bivalve raw diversity vs. Outcrop Area 0.322

Collections
Calcitic bivalve occurrences vs. Collections 0.958
Calcitic bivalve raw diversity vs. Collections 0.879

Table 9: Spearman’s rank correlations between generic diversity of faunal groups and various sampling proxies for distance-from-paleoshoreline zones within the Cenomanian-Turonian and lower Campanian
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p-value Sig.

0.05569 N/A
0.00163 *
0.00000 *
0.00084 *
0.00624 *
0.00569 *
0.01740 *
0.04011 *
0.02918 *
0.00277 *
0.00000 *
0.00071 *
0.49070 N/A
0.27623 N/A
0.00000 *
0.01000 *
0.12070 N/A
0.19248 N/A
0.00104 *
0.00418 *
0.86898 N/A
0.30701 N/A
0.00000 *
0.00017 *

Table 9: Spearman’s rank correlations between generic diversity of faunal groups and various sampling proxies for distance-from-paleoshoreline zones within the Cenomanian-Turonian and lower Campanian
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