1,209 research outputs found

    Time-Dependence of the Mass Accretion Rate in Cluster Cooling Flows

    Get PDF
    We analyze two time-dependent cluster cooling flow models in spherical symmetry. The first assumes that the intracluster gas resides in a static external potential, and includes the effects of optically thin radiative cooling and mass deposition. This corresponds to previous steady-state cooling flow models calculated by White & Sarazin (1987). Detailed agreement is found between steady-state models and time-dependent models at fixed times in the simulations. The mass accretion rate is found either to increase or remain nearly constant once flows reach a steady state. The time rate of change of the accretion rate is strongly sensitive to the value of the mass deposition parameter q, but only mildly sensitive to the ratio beta of gravitational binding energy to gas temperature. We show that previous scaling arguments presented by Bertschinger (1988) and White (1988) are valid only for mature cooling flows with weak mass deposition (q ~< 1). The second set of models includes the effects of a secularly deepening cluster potential and secondary infall of gas from the Hubble flow. We find that such heating effects do not prevent the flows from reaching a steady state within an initial central cooling time.Comment: 22 pages (AASTeX) with 16 EPS figures; accepted for publication in The Astrophysical Journa

    Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: limiting effects on device potential.

    Get PDF
    We report ZnO nanowire/nanowall growth using a two-step vapour phase transport method on a-plane sapphire. X-ray diffraction and scanning electron microscopy data establish that the nanostructures are vertically well-aligned with c-axis normal to the substrate, and have a very low rocking curve width. Photoluminescence data at low temperatures demonstrate the exceptionally high optical quality of these structures, with intense emission and narrow bound exciton linewidths. We observe a high energy excitonic emission at low temperatures close to the band-edge which we assign to the surface exciton in ZnO at ~ 3.366 eV, the first time this feature has been reported in ZnO nanorod systems. This assignment is consistent with the large surface to volume ratio of the nanowire systems and indicates that this large ratio has a significant effect on the luminescence even at low temperatures. The band-edge intensity decays rapidly with increasing temperature compared to bulk single crystal material, indicating a strong temperature-activated non-radiative mechanism peculiar to the nanostructures. No evidence is seen of the free exciton emission due to exciton delocalisation in the nanostructures with increased temperature, unlike the behaviour in bulk material. The use of such nanostructures in room temperature optoelectronic devices appears to be dependent on the control or elimination of such surface effects

    Seeking justice and redress for victim-survivors of image-based sexual abuse

    Get PDF
    Despite apparent political concern and action – often fuelled by high-profile cases and campaigns – legislative and institutional responses to image-based sexual abuse in the UK have been ad hoc, piecemeal and inconsistent. In practice, victim-survivors are being consistently failed: by the law, by the police and criminal justice system, by traditional and social media, website operators, and by their employers, universities and schools. Drawing on data from the first multi-jurisdictional study of the nature and harms of, and legal/policy responses to, image-based sexual abuse, this article argues for a new joined-up approach that supports victim-survivors of image-based sexual abuse to ‘reclaim control’. It argues for a comprehensive, multi-layered, multi-institutional and multi-agency response, led by a government- and industry-funded online or e-safety organisation, which not only recognises the diversity of victim-survivor experiences and the intersection of image-based sexual abuse with other forms of sexual and gender-based violence and discrimination, but which also enables victim-survivors to reclaim control within and beyond the criminal justice system

    Microbial diversity and iron oxidation at Okuoku-hachikurou Onsen, a Japanese hot spring analog of Precambrian iron formations

    Get PDF
    Banded iron formations (BIFs) are rock deposits common in the Archean and Paleoproterozoic (and regionally Neoproterozoic) sedimentary successions. Multiple hypotheses for their deposition exist, principally invoking the precipitation of iron via the metabolic activities of oxygenic, photoferrotrophic, and/or aerobic iron-oxidizing bacteria. Some isolated environments support chemistry and mineralogy analogous to processes involved in BIF deposition, and their study can aid in untangling the factors that lead to iron precipitation. One such process analog system occurs at Okuoku-hachikurou (OHK) Onsen in Akita Prefecture, Japan. OHK is an iron- and CO_2-rich, circumneutral hot spring that produces a range of precipitated mineral textures containing fine laminae of aragonite and iron oxides that resemble BIF fabrics. Here, we have performed 16S rRNA gene amplicon sequencing of microbial communities across the range of microenvironments in OHK to describe the microbial diversity present and to gain insight into the cycling of iron, oxygen, and carbon in this ecosystem. These analyses suggest that productivity at OHK is based on aerobic iron-oxidizing Gallionellaceae. In contrast to other BIF analog sites, Cyanobacteria, anoxygenic phototrophs, and iron-reducing micro-organisms are present at only low abundances. These observations support a hypothesis where low growth yields and the high stoichiometry of iron oxidized per carbon fixed by aerobic iron-oxidizing chemoautotrophs like Gallionellaceae result in accumulation of iron oxide phases without stoichiometric buildup of organic matter. This system supports little dissimilatory iron reduction, further setting OHK apart from other process analog sites where iron oxidation is primarily driven by phototrophic organisms. This positions OHK as a study area where the controls on primary productivity in iron-rich environments can be further elucidated. When compared with geological data, the metabolisms and mineralogy at OHK are most similar to specific BIF occurrences deposited after the Great Oxygenation Event, and generally discordant with those that accumulated before it

    Chandra Observation of the Cluster Environment of a WAT Radio Source in Abell 1446

    Full text link
    Wide-angle tail (WAT) radio sources are often found in the centers of galaxy clusters where intracluster medium (ICM) ram pressure may bend the lobes into their characteristic C-shape. We examine the low redshift (z=0.1035) cluster Abell 1446, host to the WAT radio source 1159+583. The cluster exhibits possible evidence for a small-scale cluster-subcluster merger as a cause of the WAT radio source morphology. This evidence includes the presence of temperature and pressure substructure along the line that bisects the WAT as well as a possible wake of stripped interstellar material or a disrupted cool core to the southeast of the host galaxy. A filament to the north may represent cool, infalling gas that's contributing to the WAT bending while spectroscopically determined redshifts of member galaxies may indicate some component of a merger occurring along the line-of-sight. The WAT model of high flow velocity and low lobe density is examined as another scenario for the bending of 1159+583. It has been argued that such a model would allow the ram pressure due to the galaxy's slow motion through the ICM to shape the WAT source. A temperature profile shows that the cluster is isothermal (kT= 4.0 keV) in a series of annuli reaching a radius of 400 kpc. There is no evidence of an ongoing cooling flow. Temperature, abundance, pressure, density, and mass profiles, as well as two-dimensional maps of temperature and pressure are presented.Comment: 40 AASTeX pages including 15 postscript figures; accepted for publication in Ap

    Merger Dynamics of the Pair of Galaxy Clusters -- A399 and A401

    Full text link
    Convincing evidence of a past interaction between two rich clusters A399 and A401 was recently found by the X-ray imaging observations. In this paper we examine the structure and dynamics of this pair of galaxy clusters. A mixture-modeling algorithm has been applied to obtain a robust partition into two clusters, which allows us to discuss the virial mass and velocity distribution for each cluster. Assuming that these two clusters follow a linear orbit and they have once experienced a close encounter, we model the binary cluster as a two-body system. As a result, four gravitationally bound solutions are obtained. The recent X-ray observations seem to favor a scenario in which the two clusters with a true separation of 5.4h−15.4h^{-1} Mpc are currently expanding at 583 km/s along the direction with a projection angle of 67.5 degree, and they will reach a maximum extent of 5.65h−15.65h^{-1} Mpc in about 1.0h−11.0h^{-1} Gyr.Comment: 11 pages, including 6 EPS figures and 4 tables, uses chjaa.cls, Accepted by the ChJA

    Current-Driven Conformational Changes, Charging and Negative Differential Resistance in Molecular Wires

    Full text link
    We introduce a theoretical approach based on scattering theory and total energy methods that treats transport non-linearities, conformational changes and charging effects in molecular wires in a unified way. We apply this approach to molecular wires consisting of chain molecules with different electronic and structural properties bonded to metal contacts. We show that non-linear transport in all of these systems can be understood in terms of a single physical mechanism and predict that negative differential resistance at high bias should be a generic property of such molecular wires.Comment: 9 pages, 4 figure

    A survey of etiologic hypotheses among testicular cancer researchers

    Get PDF
    Basic research results can provide new ideas and hypotheses to be examined in epidemiological studies. We conducted a survey among testicular cancer researchers on hypotheses concerning the etiology of this malignancy. All researchers on the mailing list of Copenhagen Testis Cancer Workshops and corresponding authors of PubMed-indexed articles identified by the search term “testicular cancer” and published within 10 years (in total 2750 recipients) were invited to respond to an e-mail based survey. Participants of the 8th Copenhagen Testis Cancer Workshop in May 2014 were subsequently asked to rate the plausibility of the suggested etiologic hypotheses on a scale of 1 (very implausible) to 10 (very plausible). This report describes the methodology of the survey, the score distributions by individual hypotheses, hypothesis group and the participants’ major research fields, and discuss the hypotheses that scored as most plausible. We also present plans for improving the survey that may be repeated at a next international meeting of experts in testicular cancer

    Reversal of the Charge Transfer between Host and Dopant Atoms in Semiconductor Nanocrystals

    Full text link
    We present ab initio density functional calculations that show P (Al) dopant atoms in small hydrogen-terminated Si crystals to be negatively (positively) charged. These signs of the dopant charges are reversed relative to the same dopants in bulk Si. We predict this novel reversal of the dopant charge (and electronic character of the doping) to occur at crystal sizes of order 100 Si atoms. We explain it as a result of competition between fundamental principles governing charge transfer in bulk semiconductors and molecules and predict it to occur in nanocrystals of most semiconductors.Comment: 4 pages, 4 figures (3 in color), 2 table
    • 

    corecore