12 research outputs found

    APP metabolism regulates tau proteostasis in human cerebral cortex neurons.

    Get PDF
    Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons.This research was supported by grants from Alzheimer’s Research UK and the Wellcome Trust (to F.J.L.) and core funding to the Gurdon Trust from the Wellcome Trust and Cancer Research UK. N.S. was supported by a Woolf-Fisher Trust (NZ) PhD studentship. H.Z. was supported by the Wolfson Centre at UCL, and the UCLH Dementia BRU provided financial support for the collection of patient materials. F.J.L. is a Wellcome Trust Senior Investigator, K.B. is a Torsten So¨ derberg Academy Professor, and H.Z. is a Wallenberg Academy Fellow.This is the final version. It was first published by Elsevier at http://www.sciencedirect.com/science/article/pii/S2211124715003599

    Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease.

    Get PDF
    Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteocytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular programs that control this complex cellular-network. We define an osteocyte transcriptome signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no previously known role in the skeleton and are enriched for genes regulating neuronal network formation, suggesting this programme is important in osteocyte communication. We evaluated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte transcriptome signature genes that control bone structure and function. We showed osteocyte transcriptome signature genes are enriched for human orthologs that cause monogenic skeletal disorders (P = 2.4 × 10-22) and are associated with the polygenic diseases osteoporosis (P = 1.8 × 10-13) and osteoarthritis (P = 1.6 × 10-7). Thus, we reveal the molecular landscape that regulates osteocyte network formation and function and establish the importance of osteocytes in human skeletal disease

    Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion.

    Get PDF
    The development of technologies for the in vitro amplification of abnormal conformations of prion protein (PrP(Sc)) has generated the potential for sensitive detection of prions. Here we developed a new PrP(Sc) amplification assay, called real-time quaking-induced conversion (RT-QUIC), which allows the detection of ≥1 fg of PrP(Sc) in diluted Creutzfeldt-Jakob disease (CJD) brain homogenate. Moreover, we assessed the technique first in a series of Japanese subjects and then in a blind study of 30 cerebrospinal fluid specimens from Australia, which achieved greater than 80% sensitivity and 100% specificity. These findings indicate the promising enhanced diagnostic capacity of RT-QUIC in the antemortem evaluation of suspected CJD

    KANSL1 variation is not a major contributing factor in self-limited focal epilepsy syndromes of childhood

    Get PDF
    Background KANSL1 haploinsufficiency causes Koolen-de Vries syndrome (KdVS), characterized by dysmorphic features and intellectual disability; amiable personality, congenital malformations and seizures also commonly occur. The epilepsy phenotypic spectrum in KdVS is broad, but most individuals have focal seizures with some having a phenotype resembling the self-limited focal epilepsies of childhood (SFEC). We hypothesized that variants in KANSL1 contribute to pathogenesis of SFEC. Materials and methods We screened KANSL1 for single nucleotide variants in 90 patients with SFEC. We then screened a cohort of 208 patients with two specific SFEC syndromes, childhood epilepsy with centrotemporal spikes (CECTS) and atypical childhood epilepsy with centrotemporal spikes (ACECTS) for KANSL1 variants. The second cohort was also used to evaluate minor allelic variants that appeared overrepresented in the initial cohort. Results One variant, p.Lys104Thr, was predicted damaging and appeared overrepresented in our 90-patient cohort compared to Genome Aggregation Database (gnomAD) allele frequency (0.217 to 0.116, with no homozygotes in gnomAD). However, there was no difference in p. Lys104Thr allele frequency in the follow-up CECTS/ACECTS cohort and controls. Four rare KANSL1 variants of uncertain significance were identified in the CECTS/ACECTS cohort. Discussion Our data do not support a major role for KANSL1 variants in pathogenesis of SFEC

    APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons

    No full text
    Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer’s disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons

    Alzheimer's disease biomarker utilization at first referral enhances differential diagnostic precision with simultaneous exclusion of Creutzfeldt‐Jakob disease

    No full text
    Abstract Most suspected Creutzfeldt‐Jakob disease (CJD) cases are eventually diagnosed with other disorders. We assessed the utility of investigating Alzheimer's disease (AD) biomarkers and neurofilament light (NfL) in patients when CJD is suspected. The study cohort consisted of cerebrospinal fluid (CSF) samples referred for CJD biomarker screening wherein amyloid beta 1‐42 (Aβ1‐42), phosphorylated tau 181 (p‐tau181), and total tau (t‐tau) could be assessed via Elecsys immunoassays (n = 419) and NfL via enzyme‐linked immunosorbent assay (ELISA; n = 161). In the non‐CJD sub cohort (n = 371), 59% (219/371) had A+T– (abnormal Aβ1‐42 only) and 21% (79/371) returned A+T+ (abnormal Aβ1‐42 and p‐tau181). In the 48 CJD subjects, a similar AD biomarker profile distribution was observed. To partially address the prevalence of likely pre‐symptomatic AD, NfL was utilized to assess for neuronal damage. NfL was abnormal in 76% (25/33) of A+T– subjects 40 to 69 years of age, 80% (20/25) of whom had normal t‐tau. This study reinforces AD as an important differential diagnosis of suspected CJD, highlighting that incorporating AD biomarkers and NfL at initial testing is worthwhile

    Cerebrospinal fluid neurofilament light chain differentiates primary psychiatric disorders from rapidly progressive, Alzheimer's disease and frontotemporal disorders in clinical settings

    No full text
    INTRODUCTION: Many patients with cognitive and neuropsychiatric symptoms face diagnostic delay and misdiagnosis. We investigated whether cerebrospinal fluid (CSF) neurofilament light (NfL) and total-tau (t-tau) could assist in the clinical scenario of differentiating neurodegenerative (ND) from psychiatric disorders (PSY), and rapidly progressive disorders. METHODS: Biomarkers were examined in patients from specialist services (ND and PSY) and a national Creutzfeldt-Jakob registry (Creutzfeldt-Jakob disease [CJD] and rapidly progressive dementias/atypically rapid variants of common ND, RapidND). RESULTS: A total of 498 participants were included: 197 ND, 67 PSY, 161 CJD, 48 RapidND, and 20 controls. NfL was elevated in ND compared to PSY and controls, with highest levels in CJD and RapidND. NfL distinguished ND from PSY with 95%/78% positive/negative predictive value, 92%/87% sensitivity/specificity, 91% accuracy. NfL outperformed t-tau in most real-life clinical diagnostic dilemma scenarios, except distinguishing CJD from RapidND. DISCUSSION: We demonstrated strong generalizable evidence for the diagnostic utility of CSF NfL in differentiating ND from psychiatric disorders, with high accuracy
    corecore