2,458 research outputs found

    Stresses in the material with multilayered coating under impulse thermal loading

    Get PDF
    The two-dimensional model of mechanical behavior of the specimen with multi layered coating is formulated. The parametric analysis was carried out for various types of boundary conditions. Stress intensity depending on time was studied. The influence of impulse parameters on the temperature and stresses was investigated. It was revealed that radiation heat losses reduces the action of external loading

    Modeling and Analysis of the W7-X High Heat-Flux Divertor Scraper Element

    Get PDF

    Microwave Schottky diagnostic systems for the Fermilab Tevatron, Recycler, and CERN LHC

    Full text link
    A means for non-invasive measurement of transverse and longitudinal characteristics of bunched beams in synchrotrons has been developed based on high sensitivity slotted waveguide pickups. The pickups allow for bandwidths exceeding hundreds of MHz while maintaining good beam sensitivity characteristics. Wide bandwidth is essential to allow bunch-by-bunch measurements by means of a fast gate. The Schottky detector system is installed and successfully commissioned in the Fermilab Tevatron, Recycler and CERN LHC synchrotrons. Measurement capabilities include tune, chromaticity, and momentum spread of single or multiple beam bunches in any combination. With appropriate calibrations, emittance can also be measured by integrating the area under the incoherent tune sidebands

    Assessing NARCCAP climate model effects using spatial confidence regions

    Get PDF
    We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference

    Effect of microstructures on the electron-phonon interaction in the disordered metals Pd60_{60}Ag40_{40}

    Full text link
    Using the weak-localization method, we have measured the electron-phonon scattering times τep\tau_{ep} in Pd60_{60}Ag40_{40} thick films prepared by DC- and RF-sputtering deposition techniques. In both series of samples, we find an anomalous 1/τepT21/\tau_{ep} \propto T^2\ell temperature and disorder dependence, where \ell is the electron elastic mean free path. This anomalous behavior cannot be explained in terms of the current concepts for the electron-phonon interaction in impure conductors. Our result also reveals that the strength of the electron-phonon coupling is much stronger in the DC than RF sputtered films, suggesting that the electron-phonon interaction not only is sensitive to the total level of disorder but also is sensitive to the microscopic quality of the disorder.Comment: accepted for publication in Phys. Rev.

    Simulations of the TJNAF FEL with tapered and inversely tapered undulators

    Get PDF
    Experiments using the TJNAF FEL have explored the operation with both tapered and inversely tapered undulators. We present here numerical simulations using the TJNAF experimental parameters, including the effects of taper. Singlemode simulations show the effect of taper on gain. Multimode simulations describe the evolution of short optical pulses in the far infrared, and show how taper affects single-pass gain and steady-state power as a function of desynchronism. A short optical pulse presents an ever-changing field strength to each section of the electron pulse so that idealized operation is not possible. Yet, advantages for the recirculation of the electron beam can be explored.The authors are grateful for support by the Naval Postgraduate School

    Statistical Communication Theory

    Get PDF
    Contains reports on seven research projects

    Beam instrumentation for the Tevatron Collider

    Full text link
    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders
    corecore