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A. A THEOREM CONCERNING NOISE FIGURES

An expression is obtained for the greatest lower bound of the noise figure of a system

consisting of n identical tubes whose plate signals are directly added and whose inputs

are obtained through a linear passive coupling network from a source having an internal

impedance R s . It is found that the optimum attainable noise figure of such a system is

equal to the optimum noise figure of a circuit consisting of one such tube and an appro-

priate coupling network.

Introduction

The electron tube, while providing amplification, is a source of noise. Thus, for

the detection of weak signals it is advantageous to design the circuitry associated with

the amplifier to maximize the signal-to-noise ratio at the output of the amplifier when

it is fed from a given source. That is, it is advantageous to minimize the noise figure

of the circuit. In the past, attempts have been made to obtain smaller noise figures than

obtainable with one tube by using circuits involving more tubes; the plate signal of each

tube was added directly to the plate signals of the other tubes to form the output of the

circuit. Such attempts have been motivated by the hope that smaller noise figures could

be obtained by taking advantage of the incoherency of noise voltages from different noise

sources. (The signal at the output of each tube adds coherently while the noise arising

from different tubes adds incoherently.) It is the purpose of this work to prove that the

noise figure of a circuit involving n identical tubes, connected as indicated above, is at

best equal to the optimum noise figure attainable with the use of only one tube and an

appropriate coupling network.

Proof

The noise figure calculations are based on a unit bandwidth centered about a fre-

quency f. It is assumed that each tube may be represented, as far as noise figure cal-

culations are concerned, by a shunt resistance Rg
g

and a series equivalent resistance Req followed by
IDEAL
NOISELESS an ideal noiseless tube. According to this assump-
TUBE

tion, the equivalent circuit is shown in Fig. X-1.

UAssociated WiI t each resistance is a series Lthermal

Fig. X-1 noise voltage source. For a resistance R the

Noise equivalent circuit of con- open circuit mean square voltage per unit band-

ventional amplifier tube. width is 4KTpR, where: K = Boltzmann's constant;
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Fig. X-2

Equivalent circuit (for noise figure calculation) of a
source coupled through a general coupling network to
n tubes whose plate signals are directly added.

T = temperature in degrees Kelvin; p = a positive factor used to take into account the

equivalent noise temperature of the resistance. We shall call it the equivalent temper-

ature factor.

An equivalent circuit (as far as noise figure calculations are concerned) of a system

consisting of n identical tubes whose plate signals are added directly and whose grid

signals are obtained through a general linear passive coupling network from a source

with impedance Rs is shown in Fig. X-2. The ideal noiseless tubes of Fig. X-l have

been replaced by ideal transformers whose turns ratios have conveniently been chosen

to be unity. There is no loss of generality in this choice since a change in the output

level affects both signal and noise and thus leaves the signal-to-noise ratio unaltered.

The circuit shown in Fig. X-2, with the terminals p-p open circuited, has the same

noise figure as the system of n tubes under consideration. The resistances Ra through

R. represent all the resistors in the coupling network. The sources in series with each

resistor are the equivalent noise voltage sources. The equivalent temperature factor

of each R is p. The equivalent temperature factor of each of the resistors in the

coupling network is arbitrary and is denoted in Fig. X-2 by the symbol p with a sub-

script corresponding to the resistor with which it is associated.

For a linear system, the ratio of the open circuit voltage response at terminals k-k

to a voltage excitation at terminals j-j can be expressed in terms of the short circuit

admittance parameters as:

G(w) = Ykj (1)
Ykk

The noise figure of a system is defined as
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"noise power" at the output caused by noise sources in the system
F 1+

"noise power" at the output caused by noise generated in the source impedance

(2)

The term "noise power" denotes the integral of the power spectrum of the open circuit

voltage over a unit bandwidth centered about a frequency f. Making use of Eqs. I and 2,

the noise figure for the system shown in Fig. X-2 can be written as

pR

n Req + (Y 0 1 12 + jY02 12 + aRa + + +R I y 2

F Y oo 2  lY2 ooa
F=+ 

lYosIR
s IYoo I2

(3)

Certainly the right-hand side of this equation will not increase if we assume, for the

purpose of calculation, that each of the resistors Ra through R. in the coupling network

has an equivalent temperature factor equal to zero. Equation 3 then becomes

n Req[Yoo 2 + p Rg( Y01 2 + Y02 2 + .. + lY on 2 )

F > 1+ (4)

Rslos 2

Notice that the equality sign holds in Eq. 4 if Ra through Rj in Eq. 3 are zero.

Let g 0 0 be the real part of the output admittance y oo As a consequence of the

relation 1yoo I > goo we can write

n Req g + p Rg (y 0 1 
2 + 0 2 2 '" on 2)

F > 1 + (5)

RslYos 2

Notice that the equality sign in Eq. 5 holds when the condition stated under Eq. 4 holds

and, at the same time, the output admittance is real.

In order to reduce the number of variables in this expression for F (Eq. 5) let us

make use of power relations at the output terminals 0-0. Let P be the power absorbed

by the system when one volt is applied at the output terminals and all other voltage

sources are shorted.

Then

P = Rsyso 2 + Rg (101 2 + y 01 2 +. + lno2)+ P 1 (6)
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where P is the power absorbed in the coupling circuit resistors Ra through Rj and is

therefore equal to or greater than zero. Furthermore, for the particular excitation

mentioned above, P is just equal to goo. Using this fact and the relation yik = Yki for

a bilateral network we obtain the equation

goo0 0 =Rslosl2 + R y012 02 ... + on2)+ P (7)

Using Eq. 7 in Eq. 5 we have

2
nR goo +p goo - P

eq oo 00 1
F 1- p+ (8)

Rsysol 2

In order to simplify this expression further let us again consider the system shown

in Fig. X-2. We shall excite the system at the terminals 0-0 with a unit voltage source.

For convenience Fig. X-2 is redrawn in Fig. X-3 with the resistances R referred to
g

the secondary of the ideal one-to-one ratio transformers. We desire to find a relation

between goo and jyos . In obtaining this relation it is convenient to make use of the

following inequality (the proof of this inequality is given in the following subsection):

2n n

Slek n ek(9)
k= 1 k= 1

For a one-volt excitation at terminals 0-0 it is seen, from power considerations and

the use of Eq. 7, that

e (le 1 2 + e 2 1 2 + ... + en 2)+ R s l y s o l 2 + p
oo = R n

> R Ysol 2 + 1 + P (10)
g

Notice that the equality sign holds if the coupling network is symmetrical with respect

to its n outputs. Substitution of the expression for lyso 2 , obtained from Eq. 10, in

Eq. 8 yields

2
nR g +pg -pP

eq oo +  goo P 1
F > I - p + =A (11)

1
goo - nR P

g

The quantity A is thus expressed as an explicit function of the two variables g0 o and P 1.
We desire to minimize A with respect to these two variables. It can be seen from
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Es

Fig. X-3 Fig. X-4

Redrawn with all the noise voltage sources set Example of a circuit using n tubes
to zero and with the resistances R referred and having the minimum obtainable

to the secondary of the ideal transformers. noise figure of one tube.

Eq. 7 that goo and P1 are, in general, dependent quantities. If A is minimized with

respect to goo and PI' considered as independent variables, the minimum value thus

obtained will certainly be equal to, or less than, the minimum obtained when the con-

straints are imposed. Further, it will be seen that in this particular case the minimums

are equal since a coupling network corresponding to the minimum A will be physically

realizable.

Proceeding with the minimization, Eq. 11 yields

P +nR 2

8A nR eq 00
aA g

>0 (12)
a g (oo nRg

A justification of the inequality symbol in this equation is necessary. Referring to

Eq. 10 we see that the denominator in Eq. 12 is always positive and greater than zero.

(It can be zero only for the trivial case in which Rs YsoI 2 is zero, a case which clearly

is of no interest since it implies either a zero impedance source or no transmission

from input to output, that is, yso = 0.) Since p is a positive quantity, it is clear that

the numerator of Eq. 12 is greater than zero and that the inequality symbol is valid as

shown.

Since (aA/aP 1 ) > 0 and since P 1 > 0, the minimum value of A occurs for P1 = 0.

We next find the optimum goo which gives the minimum A for P1 = 0.

nR g +pn Req 00oo +

A (P0) 1 - P + 1 (13)

1-
n Rg g00
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2R
eq p

nR
eq Rg nR g 2

8A(Pl=0) g oo nR goo
1= 0 (14)

agoo 2

SnRg g0 0

For the same reasons discussed earlier relative to Eq. 12, the denominator of Eq. 14

is always greater than zero. Thus by setting the numerator equal to zero we obtain the

optimum value of goo

gO 1 1+ 1+
go0 0  nR 1opt g

(15)

Substituting this optimum value of goo into Eq. 13 we obtain the minimum value of A.

R
eq

A m 1+2- 1+ 1+
min R

g

(16)

The fact that the value of A obtained by this procedure is a minimum can be verified by

considering Eqs. 10 and 13.

In view of Eqs. 11 and 15 we can write

R
eq

F >- 1 + 2 -1 1+
R

g

(17)

The fact that the equality sign in this inequality is valid is most readily demonstrated by

presenting an example in which it holds. The construction of an example is facilitated

by noting the sufficient conditions for the validity of the equality sign in the relations of

Eqs. 4, 5, and 10. These conditions are stated immediately following their respective

equations. Such an example is shown in Fig. X-4. All of the n tubes are in parallel,

and the general coupling network is just an ideal transformer with an appropriate turns

ratio. A straightforward calculation shows that this circuit has the noise figure given

by Eq. 17 with the equality sign when each tube has the input resistance Rg (with an

equivalent temperature factor p) and the equivalent shot noise resistance Req

The interesting result is that the right-hand member of Eq. 17 is independent of n

and is exactly the optimum noise figure attainable using a single tube. For R /R << 1,
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Eq. 17 reduces to the more familiar form for the noise figure of a single stage (1):

1/2
( Req
(Rg

Derivation of Inequality 9

Derivation of the inequality:

lek2 1
ek1 n ek

(18)

(9)

Since the magnitude of the sum of complex numbers is less than or equal to the sum

of the magnitudes we can write

nj

k=1

nl

k= I

ek 1<
n (19)ek I

But

(n-

n

k= 1
ekI 2

(lei - lek1) 2
<

Z ei e k
i, k
itk

n

k=1

lek 2 (20)

i*k

Thus, combining Eq. 19 and Eq. 20 we have the desired result:

2n n

ek2 n ek
k=l k= 1

A. G. Bose, S. D. Pezaris
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B. THE WIENER THEORY OF NONLINEAR SYSTEMS

Introduction

Briefly stated, the objectives of Dr. Wiener's method are to characterize nonlinear

systems independent of their input and to present a method for synthesizing the systems

from their characterizing parameters. An operator relating the input and output of the

nonlinear system is defined in such a way that the parameters which characterize the

system can be evaluated experimentally.

The method is confined to those nonlinear systems in which the remote past becomes

less and less relevant to the behavior of the system as we push it back in time. It is

further restricted to those systems in which fast changes in the output, relative to the

input, do not occur. The reason for these restrictions, as will become apparent, is to

avoid an excessive number of terms in the Laguerre and Hermite expansions respec-

tively.

As Dr. Wiener has shown, the proper probe for the general investigation of non-

linear systems is the output of a shot-effect generator (gaussian noise with a flat power

spectrum). The shot effect is the most general probe and enables nonlinear systems

to be classified for all inputs (1).

Definitions

To simplify the description of the method, it is convenient at this point to define

certain quantities and relations that are useful in the development of the method.

A. The nth Laguerre polynomial,

1 x d n -x
L (x) = I. e x (xn e

n n! ndxn

B. The normalized Laguerre functions hn(x) are defined

h (x) = ex/2 Ln(x) (1)

The following orthogonality relation exists for these functions:

01 if m = n

hm(x) h (x) dx = (2)
Sif m n

C. The nth Hermite polynomial

Hn(x) = (-I)n e (dx e

D. The normalized Hermite polynomials 4n(x) are defined
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Hn(X)

(2n n! ()/2) 1/2 
(3)

E. The normalized Hermite functions are defined

n(x) = e - x 2 / 2 n(X) (4)

These functions form a normal orthogonal set over the interval -0o to oo. Conse-

quently, we have the relation

00 2m=n

m(x)n(x ) e - x dx = m n(5)

Description of the General Method of Characterization and Synthesis

Now let us consider a nonlinear system whose input and output are the stationary

time series x(t) and y(t), respectively. In general, y(t) is some function of the past of

x(t). Consequently, it is of interest to obtain a set of parameters which characterize

the past of x(t). The past of x(t) can be expanded in a series of Laguerre functions as

indicated in Eq. 6

x(-t) = X n hn(t) (6)

n

The Laguerre functions form a complete set over the interval zero to infinity and the

coefficients u form a set of variables which characterize the past of x(t).

These Laguerre coefficients of the past of a time function x(t) are easily generated

in practice. They are simply the output of a Laguerre network (a network whose impulse

response is hn(t)) whose input is x(t). This can be seen as follows. Referring to

Fig. X-5, the output at the present time (t=O) is given by the convolution of x(t) with

hn(t). That is,

0 00

y(0) = x(z) hn(O-z) dz = x(-z) hn(z) dz (7)

Let us compare this expression for y (O) with the expression for un which is obtained

INPUT LAGUERRE NETWORK OUTPU

(t IMPULSE RESPONSE IS y,(t) Fig. X-
hn() Block diagram of Laguerre network.
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from Eq. 6 by making use of the orthogonality property of Eq. 2. The latter expres-

sion is

oo

n x(-t) hn(t) dt (8)

Comparison of Eqs. 7 and 8 shows that y (0) = u n . Thus we have demonstrated that the

coefficients un can be generated by the method shown in Fig. X-5. The actual form of

the Laguerre network and the method of synthesis of this network will not be discussed

here. For a complete discussion of these topics the reader is referred to reference 2.

Since the set of coefficients un characterize the past of x(t), any quantity dependent

only on the past of x(t) may be represented as a function of these coefficients. Thus for

the nonlinear system with input x(t) and output y(t) we can write

y(t) = F [u 1 u2, . . ., us

For reasons that will soon become apparent it is convenient to express this function F

as a Hermite function expansion of the variables ul through u s . We then have

2 2 2
u 1 +u2 + +u s

y(t) ... ai, j, .,h i(u j(u 2 ) " h(us) e- 2

i j h

(10)

In order to simplify this equation let f(a) represent the polynomial Ci(U 1) ... h(Us), and

A represent the corresponding value of ai, j, . . .,h. Then Eq. 10 becomes
a 1, h

y(t) = Y Aa '(a) e

2 2

2
(11)

If, in Eq. 10, the indices i, j, ... , h range from 0 to N - 1, then a ranges from 0 to

N s - 1.

To characterize the nonlinear system, it is necessary to evaluate the coefficients

Aa in Eq. 11. To this end, consider the time average

y(t) 4() = > Aa 4(a) i(P) e

2 2
u2+...+u

1 s
2 

(12)

Let us take advantage of the ergodic theorem in evaluating the right-hand member of
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this equation. We then have

2 2
U +...+u

00 o0 1 s

y(t) (P) = Aa ... P(a) 1(p) e 2 P(ul, .. , us) dul . . dus
a -00 -00

(13)

As mentioned earlier, the probe for the investigation of the nonlinear system is the out-

put of a shot-effect generator. Thus, for the evaluation of the coefficients A in Eq. 13,

the input x(t) to the nonlinear system is a gaussian signal with a flat power spectrum.

Now recall that the parameters ul through us which characterize the past of x(t) can be

obtained as the outputs of the linear passive Laguerre network whose input is x(t). Thus,

if x(t) has a gaussian distribution, then ul through u s all have gaussian distributions.

In fact, it can be shown from the properties of the Laguerre network, or from the defini-

tion of the Laguerre functions, that ul through u s all have independent normalized

gaussian distributions when x(t) is gaussian with a flat power spectrum and the proper

variance. Thus we have

2 2
u +...+u21 s

P(u , us ) = (2)-s/2 e 2 (14)

so that Eq. 13 becomes

00 0 -(u+...+ )

y(t) T(p) = (2)-s 2  A a . (a) 4(P) e s du . du s  (15)

a -o0 -oo

The reason for the choice of Hermite functions for the expansion of Eq. 9 now

becomes apparent. The joint gaussian probability density (Eq. 14) supplies the neces-

sary exponential factor in the Hermite function expansion (Eq. 12) to enable us to take

advantage of the orthogonality relation of Eq. 5 in evaluating the coefficients A . Taking

advantage of this orthogonality we have:

A = (2r) s / 2 y(t) '(p) (16)

The A 's, together with a knowledge of the number of Laguerre coefficients used, serve

to characterize the nonlinear system under test. The setup for the experimental evalua-

tion of the coefficients A a is shown in Fig. X-6.

Now let us consider the problem inverse to that discussed above. Suppose we are

given a set of coefficients A and asked to find a nonlinear system corresponding to

these coefficients. Equation 11 is the guide for the synthesis problem. This equation

tells us that, for each a, we must form (a) and multiply it by A a and the exponential
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Fig. X-6

Block diagram of the circuitry for the classification of nonlinear systems.

Fig. X-7

Block diagram for the synthesis of nonlinear systems.

exp - u + ... + u )/2. Then each such product must be added. In practice, the number

of multipliers is reduced if we first form the sum of the products A a T(a) and then mul-

tiply by the exponential function.

The exponential function, exp - + . .. + u /2, can be obtained as the product of

s exponential function generators whose inputs are respectively u1 through u s . Such

generators give an output of exp -(x2/2) when the input is x. They are realizable, among

other ways, in the form of a small cathode-ray tube with a special target to generate

the exp -(x2/2) function.

The block diagram of the circuitry used for the synthesis procedure is shown in

Fig. X-7.

Example

In order to fix ideas, let us consider a simple example which is particularly suited

to characterization and synthesis by Dr. Wiener's method. Let the given nonlinear

system contain no storage elements. Further let its input-output characteristic be given

by the equation

y(t) = e - x 2 (t)/2 (17)

where x(t) is the input and y(t) is the output.

In both the characterization and synthesis procedures described, the Laguerre
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network is used to introduce dependence of the output upon the past of the input. The
nonlinearity is brought about by the Hermite polynomial generator. For the simple

example under consideration, there is no dependence upon the past and thus we can by-
pass the Laguerre network. In the experimental procedure, the fact that this nonlinear
system has no storage can easily be determined from the results of a priori tests made
on the system.

To proceed with the characterization of the simple example, we notice that as a
result of by-passing the Laguerre network (Fig. X-6) the variables u 1 through u s are
replaced by the single variable x(t). Equation 10 then becomes:

y(t) = a i  i(x) e - x 2/2

i

Equation 16 becomes

ai = (2Tr) 1/ 2 y(t) 4 i(x)

(18)

(19)

Let us make use of the ergodic theorem

average. Using Eq. 17 we can write

a. = (2T)1/2

-00

to evaluate this time average as an ensemble

bi(x ) e-x 2 /2 p(x) dx

But since, in the test setup, x(t) is

probability density of x is

the output of an ideal shot-effect generator, the

p(x) = 1 e 2 /2
(2w)

Thus

00
2

ai = (x) e -x dx

Referring to Eq. 3 and the definition of the Hermite polynomial, it is seen that

(x ) = I-1/4

With this result, Eq. 22 becomes

a ia. = 1/4

-00

2
4i(x) %O(x) e - x

(24)
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As a consequence of the orthogonality relation of Eq. 5 we have the result

a = 1/4

o (25)

a. = 0 i 0
1

The relations of Eq. 25 together with the knowledge that the Laguerre network has

been by-passed serve to characterize the given nonlinear system.

Now let us consider the inverse problem with respect to the same example. Suppose

we are given the coefficients of Eq. 25 along with the associated information in the

preceding paragraph. Our job is to synthesize the corresponding nonlinear system.

The guide for the synthesis is Eq. 18 which corresponds to Eq. 11 in the more com-

plicated case. Following the general procedure for the synthesis described earlier it

is readily seen that the resulting system is that shown in Fig. X-8. Figure X-8(a)

shows how the synthesis takes form according to the formal dictates of Eq. 18. The

simplified equivalent system obtained from Fig. X-8(a) by inspection is shown in

Fig. X-8(b). We see that for the simple example considered the synthesized system

consists solely of the "function generator," a component which in the more complicated

case will form only a part of the synthesized system.

At this point it is of interest to note that we have at our disposal the two scale factors

of the Laguerre and Hermite functions. For simplicity in the presentation of the basic

concepts of Dr. Wiener's method, these scale factors have been chosen to be unity. In

practice, they can be used to reduce the number of parameters, A a , necessary to char-

acterize the system. They are to be judiciously chosen on the basis of a priori knowl-

edge of, or tests made on, the nonlinear system.

x(t) FUNCTION y(t)=e 2
GENERATOR

Xe

(b)

Fig. X-8

(a) Synthesis of the nonlinear characteristic y = exp -(x2/2)
according to the general procedure of Fig. X-7. (b) Equivalent
reduced form of part (a).
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In concluding this discussion of Dr. Wiener's method of nonlinear systems the ques-

tion naturally arises as to the number of parameters, A a , that may be necessary to

characterize a practical system. In the simple example worked earlier, only one param-

eter was necessary. However, suppose we have a system which requires s Laguerre

coefficients to sufficiently characterize that portion of the past of x(t) which influences

the behavior of the system. Further suppose we decide that a sufficient approximation

to the performance of the system is obtained by letting the indices i, j, ... , h in Eq. 10

range from 0 to N - i. Then there are Ns parameters (A ) necessary to characterize

the system. Without a doubt this number can become quite large in many practical

cases. However, with the freedom that exists in nonlinear systems, one can hardly

expect to apply such a general approach without considerable effort.

A. G. Bose
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C. PROPERTIES OF SECOND-ORDER AUTOCORRELATION FUNCTIONS

In the study of second-order autocorrelation functions the following two definitions

are used:

111 (TI T2 ) = fl(t) fl(t + T1 ) fl(t + T, + T2 ) (1)

*111(T1 , TZ) = fl(t) fl(t + TI) fl(t + T2 ) (2)

where fl(t) is a stationary time series.

By shifting the time origin in Eq. 1 we obtain the following relations between the two

definitions:

111( Z) 11, T2 -TI) (a)

111(-TI, T) 1111TI, 2) (b)

(3)
4 1 1 1 (T, -TZ) = 4 1 1 (-T 1 '

, T 2 ) (c)

1 1 1 (-T ,-T) = 1 1 (-T, TI) (d)

From the definition of 4 1 1 1(T 1
' T 2 ) it is clear that

71 1 1(T 1 , 2) = 11(Tz, T1 ) (4)

Making use of this relation, we obtain from 3(a) and 3(d) the relations

111(T1 T2) = 1 (-TI, T2) (3a')

k1 1 1 (-T 1 -T 2 ) = 1 1 1 (T1 , -T 2 ) (3d')

The relations between 4 1 11( 1
' T2) and 4 1 1 1(T1 , T 2 ) as given by Eqs. 3b, c, a', and d' are

illustrated in Fig. X-9. From these relations it can be shown that the 4 1 1 1(T
'  

T 2) plane

is the 4 1 1 1(T 1 T 2 ) plane rotated about the 72 axis by 1800. That is, the 4 1 1 1 (T 1 , TZ) plane

is the mirror image of the 4 111(T 1 T 2) plane about the 72 axis. Consequently, given

the properties of T11 (T1' T2 ), we can easily establish the corresponding properties of

4 1 1 1 (T 1
' 
T2 ) and vice versa.

By a process similar to that used to derive Eq. 3, we obtain from Eq. 1 the relation

4 1 1 1(TI, TZ)= 4 (-1 1 1(- 2 , -I) = ' 1 1 (-T 1, T1 + T 2 ) = 1 1 1 (T, -T 1 - T2 ) (5)

This shows that a knowledge of one quadrant of 1 1 (T1', T) is sufficient to determine the
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remaining three quadrants, although
I T 2  such a procedure as indicated by this

,,, - 1,,1 ( ,,"22 = 2 I l,,,I 2) equation would not, in general, be the

most practical method for constructing

0 , the remaining quadrants.

,,-,-r2~ I ,,2*( - I , ,, ,*- -2) Now let us consider symmetry

properties of second-order correla-

o1,,(TI 2)-PLANE tion functions. From Eq. 4 we see

that 4lll(T T2 ) is always symmetri-

T2 cal about the line T1 = 2 . It follows

from this fact, and the mirror image

(-r 2 relationship between the 1 1 1 (T 1 , T 2 )

0o ', and l I(T,'T 2 ) planes, that 1111 T

is always symmetrical about the line

71 = -T
2 .

) -PLANE It is of interest to show that if f(t)

is a stationary time series such that

Fig. X-9 the statistical behavior of f(t) is iden-

Relation between 1 T 1 T2) and 1 1 (TT2) tical with the statistical behavior of

The 11 (T1 , T2 ) plane is the 1 (T 1 T the time series f(-t), then 1 1 1 (T T2)
is symmetrical about the line T = T

plane rotated 1800 about the T2 axis. is symmetrical about the line 1  2
in addition to being symmetrical about

the line T 1 = -T 2 . Symmetry about the

line T I = T2 means that 1 1 1 (T 1 , T 2) = 111 (T 2 , T 1 ). Sufficient conditions for this equality

can be established by expressing 1 1il(T, r2) as an ensemble average.

00 00 00

S111(T1 T2) = ; xyz P(X y z T+T 2 dx dy dz (6)

In this expression P x, YT 1 T+T2) is the third probability density of f(t). The sub-

scripts of the variables denote the time of observation relative to the time T = 0 when

the variable with no subscript (x in this particular expression) is observed. Using this

notation we can write

00 00 00

111L 21a x y'z ' P(x' Zy)z 1 2 dx' dy' dz' (7)

Now, in Eq. 7 let us change the dummy variables of integration. Let x' =z, y' = y,
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and z' = x. Then Eq. 7 becomes:

00 00 00

TO112 ) = - xyz P T+T 2 YT z) dx dy dz (8)

To put this equation into a form convenient for comparison to Eq. 6, let us translate

the T axis to establish the reference axis (T=0) at the time when the variable x is

observed. The result is:

00 00 00

111(T2, T1) = xyz P ,y_ 1 z l T2 dx dy dz (9)

Comparing Eqs. 6 and 9 we see that a sufficient condition for the existence of sym-

metry about the line T1 = T2 is

P x , ZT P2 yP Z -_ 1-T 2  (10)

This relation clearly holds for all stationary time series f(t) which have the same

statistical behavior as the corresponding time series f(-t). If f(t) is a periodic function,

Eq. 10 will hold, and thus there will be symmetry about the line 7 1 = T 2 for all functions

having a time origin about which the function is symmetrical.

It has been shown that 1 1 1(TI 2) is always symmetrical about the line 1= -T 2 and

is sometimes symmetrical about the line 71 = T 2 . The question naturally arises as to

the existence of symmetry about the 71 and T2 axes. It is next shown that, with the

exception of functions which give a constant second-order autocorrelation function,

symmetry about the 71 and 72 axes is not present. This result will be proved by the

method of contradiction.

By performing a translation of the time origin in Eqs. 1 and 2, it can be shown that

if symmetry exists about either the 71 or 72 axis, then it exists about both axes. Hence,

for the proof it is sufficient to show that the assumption of symmetry about the T 2 axis

leads to a contradiction.

The assumption is

(T T2) = 1 1 1(-T 2 ) (11)

Using this relation and Eq. 3a' we obtain the relation

)111(- l, T2) = 1 1 1 (-T 1 , T2 ) 
(12)
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Expressing 4111(- T T2 ) in terms of definition 2,

11 1 1 (-T 1 ,T 2 - T 1 ) (13)

Hence, from Eqs. 12 and 13

S111(-T 2 1 1 (-T 1 ,T 2  - 1) (14)
1 1

If 7 1 is held fixed in Eq. 14, T1 1 (- T1
' T2 ) is periodic with respect to T2 with a period

equal to the value of T 1 . This result is a contradiction when fl(t) is a random stationary

time series, for the second-order autocorrelation function of a random function is not

periodic with respect to either T 2 or T 1 . The result is also a contradiction when fl(t)

is a periodic function, for the second-order autocorrelation of a periodic function is

periodic with respect to T2 for a given 71 but the period is independent of T 1 . Hence

assumption 11 leads to a contradiction. This proves that 1 1 1 (T 1
' T2 ) is not symmetri-

cal with respect to the T 1 or T 2 axes except for the degenerate case in which 4 1 1 1(T 1 , T2 )
is a constant.

Y. W. Lee, A. G. Bose, J. Y. Hayase

D. FIELD MAPPING BY CROSSCORRELATION

The problem of determining the location of n sources of independent random

stationary time series by the method of crosscorrelation has been considered under

restricted conditions.

The sources lying on a plane are designated by Sj, where j = 1, ... , n, as shown in

Fig. X-10. On the same plane, three points, L i , i = 1, 2, 3, forming an equilateral tri-

angle, are chosen as listening posts. The separation between these points is d. The

signals received at L. are
1

n

gi(t) = z fj(t - k d ij)  
(1)

j=1

where f (t) >, 0 is the signal generated by Sj, dij is the distance between the points S. and

L., and k is the reciprocal of the velocity of light. The second-order crosscorrelation

function of gi(t) is*

The definition of the crosscorrelation function is similar to the definition of the

autocorrelation function, 1 1 (T1 ' T2 ), discussed in subsection C.
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5~'lllll l

Fig. X-10

Distribution of sources and the
location of listening posts.

TI -1

I 

2

Fig. X-11

Relation between the areas in which sources S.

lie and the areas in which points ((i) (i2 )) lie.

2 3 (T 1 , T2 ) gl(t) g 2 (t + T 1 ) g3 (t + T 2 )

nn n

Z 3 fj(t - kdlj ) fI(t (t + T -kd3p)

j=1 1=1 p=l

As a consequence of the independence of the sources, Eq. 2 is equivalent to

(2)

n

z fj(t-kdlj) fj(t+t 1 - kd 2 j )

j=1

fj(t+ T 2 -kd 3 j)

n3 3

+ ZY

j=1 1=1 p=l
V-p

where TO = 0.

T(i) k(

72 = k

a.rp f (t+ T- 1
ajp 3 1

+ constant terms (n > 1)

The value of 12 3(T 1, T2 ) at

d2i - dli)

(d3i - dli)
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2 3 (Ti), Ti))=
12 1 22 f (t - kdli ) + A f (t - k dli)

f(t - kdij) fj(t i ) -kd2j j (2 i ) -kdI 2) 2 d3j

3 3

a fjt+T(i)-kdj)

1=1 p=l
10p

f ( +Ti -kl dp)

+ other constant terms (n > 1)

In the simple case where n = 1,

123 {k(d 2 1 - d ll ), k(d 3 1 - dl l ) = f(t - kd ll )

Since it can be shown that

3
f3(t) > f.(t) f(t +T 1) f(t + T2J i *i -r2)

the time displacements T and T (), which are related to the distances d l l , d 2 1 , and

d 3 1 by

S1) k(d 2 1 - 21) = k(d 3 1 - d 1 1
2 31 11

can be determined by plotting 1 2 3 (T 1 , T2 ) VS. T 1 , T 2 with the aid of a correlator.
When n > 1, the summation terms in Eq. 4 may introduce an error in the measured

(i) (i)T1 and T . It can be shown that this error depends on the relative position of the points
S., and the nature of the random function f.(t). If the summation terms introduce
negligible error on the measured T Ianj(i)negligible error on the measured i)and T(i), then those determine the location of S..

The difference in the distances d2i - dli, d3i - di , and d2i - d3i can be expressed

in terms of 1 ) and ) 2 by the equations

1
d2 . -d =

T i)

d d =3i ii k

(i ) (i)
1d2

21 3i k
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Three families of hyperbolas, whose respective foci are L 1 and L 2 , L 1 and L3, and L 2

and L 3 , are available for determining the location of S i . Any two families of hyperbolas

are sufficient to determine the location of S. which is given by the intersection of a

branch from each family. The choice of the two families is dictated by the geometrical

configuration of Si and the fixed points, L 1, L 2 , and L 3 . The differences in the dis-

tances from the two foci to S. for a given family are given by Eq. 8. This hyperbolic

grid system is the same as that of Loran.

With the restriction that

I T1i) < k d
and f (9)

I < kd

the relation between the areas in which the sources, Si, and the points, (T i ) , Ti)), lie

can be shown as in Fig. X-ll. The correspondence between the areas in the xy plane

and the T 1 T 2 plane is shown by primed integers and unprimed integers.

J. Y. Hayase

E. CORRELATION DETECTION OF A PERIODIC SIGNAL MULTIPLIED BY NOISE

If a periodic signal S'(t) is multiplied by statistically stationary random noise, the

product may be written

S'(t) N'(t) = [S(t) + S] [N(t) + N (1)

where S and N are the mean values of S'(t) and N'(t), respectively. If N is not zero,

the periodic signal can be detected by autocorrelation, but if it is zero, detection by

autocorrelation alone is not possible.

By filtering in the frequency domain, Eq. 1 may be reduced to S(t) N(t). For this

case, the autocorrelation function of the product is the product of the autocorrelation

functions

=SN(T) = 4s(T) N(T )  
(2)

Although S(T) is periodic, 4N(T) tends to zero for T large, so that, in general, the peri-

odic signal may not be detected by autocorrelation. If the factors of Eq. 2 are separated,

or, if 4N(T) is made to approach a constant other than zero, detection by autocorrelation

is possible.

The factors may be separated by taking the logarithm, thus

log ISNI = log ISI + log INI (3)
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(T) = 4 log S ( T ) + c10g N(T) + 2 log N(t) log S(t) (4)

The periodic signal is revealed by the first term of Eq. 4; the other terms approach

constants for T large.

The noise factor of Eq. 2 may be made nonzero for T large by a nonlinear operation

on the product S(t) N(t). If the product S(t) N(t) is applied as an input to a nonlinear

device the transfer characteristic of which may be written

oo

f(x) = Anxn (5)

0

then the output autocorrelation function may be written

00 00

(T) = An [S(t) N(t)]n Y Aj [S(t+T) N(t+T) j

n=O j=0

= A 2 [S(t) S(t+T)]n N(t) N(t+T)]n

n=0

+ Z Z An A S(t)n S(t+T) j N(t)n N(t+T) j  (6)

n=0 j=0
n j

Some noise terms having nonzero means are multiplied by signal terms. Since it is not
possible for a random function raised to an even power to have a zero mean, any non-

linear device having even-power terms in the power series expansion of its transfer
characteristic permits the detection of the periodic signal. If the probability density

function of N(t) has even symmetry about the origin, then the odd-power terms of Eq. 5

do not aid in the detection of the periodic signal; but if not, the odd-power terms may

aid.

A commercially available logarithmic device and a full-wave linear rectifier provided

the more interesting transfer characteristics for the experimental work. The character-

istics are

k I log k2 x a K x . b

Limiter y = k3 x -a < x K a (7)
(odd)

-k 1 log (-k 2 x) -b < x K -a

-70-



EXPERIMENTAL *
CALCULATED

Fig. X-12

c(7) for full-wave S.

EXPERIMENTAL ***
CALCULATED -
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Fig. X-13

(T) for full-wave log S.

0.2 FULL-WAVE SN,0.66V RMS(MAX INPUT)

-0.2

Fig. X-14 Fig. X-15

(7) for full-wave log SN and full-wave SN. (T) for full-wave SN.
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c. SN, sine wave times noise.

d. Limiter-log SN. e. Full-wave log SN. f. Full-wave SN.

g. Half-wave log SN. h. Half-wave SN. i. Full-wave log S.

Fig. X-16

Oscilloscope photographs: time scale, 1 msec; sine wave, 5. 1 kc/sec;
noise, 4 kc/sec centered at 21. 9 kc/sec.

a. S, sine wave. b. N, band-limited noise.
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k4 log I k2xl a< l xl < b

Full-wave y = (8)
(even) ik5x 0 < Ixl < a

Full-wave y = Ik 6 xi (9)
(even)

If the input of an ideal logarithmic device is E sin wlt, then the output is

y = B logE IE sin wlt , and the autocorrelation function of the output is

4(T) =(B loge E) 2 + I T(WI)+ ] (10)

where B is determined by the characteristics of the log device and the gain of the output

amplifiers. The autocorrelation function for the output of a full-wave linear rectifier,

y = IE sin wl t i is

() -= - W T cos WIT + sin 017 (11)

Calculated and experimental results are shown in Figs. X-12 and X-13 for these two

cases.

Figure X-14 shows the experimentally obtained autocorrelation function for full-wave

log SN and full-wave SN for identical correlator control settings. S is a sine wave and

N is band-limited gaussian noise. Figure X-15 shows the autocorrelation function for

full-wave SN for increased correlator sensitivity (and increased error). The similarity

of the curves in Fig. X-12 and X-14 suggests that the factors did separate as indicated

by Eq. 3. The autocorrelation function for limiter-log SN does not reveal the periodic

component.

Oscilloscope photographs such as those in Fig. X-16 proved to be a valuable aid.

C. E. McGinnis
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F. AN IMPROVEMENT IN THE DIGITAL ELECTRONIC CORRELATOR

The correlator employs a compensating circuit to minimize drift error. When

processing low-frequency information (dc to 500 cps), this compensating circuit acts

upon a reference voltage of zero volts which is applied to the inputs of the correlator in

intervals alternate to those during which the signals to be correlated are applied. The

intervals are such that samples taken by the machine are alternately signal and refer-

ence samples. Difficulty in establishing a constant reference voltage of zero volts during

the reference sample intervals has led to the development of a very satisfactory circuit

for this purpose.

The circuit previously in use consisted of two tubes in series working between

+150 volts and -150 volts. These tubes were alternately gated on and off, and their

junction was connected to the input tube of the correlator. A potentiometer in series

with the two tubes adjusted the voltage at the junction, during the on time, to zero.

During the off time, the grid of the correlator input tube was at high impedance and free

to receive the signal fed to it through a series resistor. This method suffered from the

obvious difficulty of being very dependent upon the tube characteristics and upon the

stability of the plus and minus B supplies.

The improved circuit is shown in Fig. X-17. During the intervals for which both

sections of the tube are on, there is a very small resistance (about 150 ohms) between

points a and b and the signal, f(t), passes freely to the grid of the correlator input tube.

During the intervals for which both sections of the 6AS7 are off, the grid of the corre-

lator tube is isolated from the source f(t), and it returns to zero. This circuit has the

advantage of being almost completely independent of changes in the 6AS7 characteristics.

Fig. X-17

Improved circuit for the digital correlator. The time function f(t)
is the function to be correlated (10 volts maximum either side of
zero). It is to be obtained from a low impedance dc coupled source.
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Since there is no B voltage applied to the 6AS7, and since the filament voltage is reduced

to minimize hum, the tube life is long. This circuit, in conjunction with the compensa-

tor, enables the machine to process low-frequency information with an accuracy of the

same order of magnitude as that obtained when the machine is ac coupled and processing

higher frequency information.
A. G. Bose

G. MEASUREMENT OF INDUSTRIAL PROCESS BEHAVIOR

Experimental determinations of the transfer function H(w) or impulse response h(t)

of industrial processes are complicated by the presence of noise and by the difficulty

of applying suitable sinusoidal or impulsive driving functions to massive industrial

systems. The statistical method of determining system characteristics overcomes these

difficulties (1). This method uses as the driving function the random fluctuations already

existing in the input variable. The result is not usually affected by random fluctuations

originating within the process.

A heat transfer process frequently encountered in industry has been chosen for

experimental study. In this process, a liquid flowing through a copper tube is heated

by water flowing through a concentric copper shell. Thermocouples are used to meas-

ure the temperatures of the liquids. When cold water from the building mains flows

through the tube and a mixture of hot and cold water from the same mains flows through

the shell, the shell and tube temperatures fluctuate as shown in Fig. X-18.

Fig. X-18

Temperature fluctuations in shell and tube of heat exchanger.
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Preliminary results obtained with the low-frequency multisignal correlator (2),

while encouraging, indicate that practical application of the method must await further

refinement of the measuring system.

S. G. Margolis
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