292 research outputs found

    On stable homotopy equivalences

    Get PDF

    Effects of Space Charge, Dopants, and Strain Fields on Surfaces and Grain Boundaries in YBCO Compounds

    Full text link
    Statistical thermodynamical and kinetically-limited models are applied to study the origin and evolution of space charges and band-bending effects at low angle [001] tilt grain boundaries in YBa2_2Cu3_3O7_7 and the effects of Ca doping upon them. Atomistic simulations, using shell models of interatomic forces, are used to calculate the energetics of various relevant point defects. The intrinsic space charge profiles at ideal surfaces are calculated for two limits of oxygen contents, i.e. YBa2_2Cu3_3O6_6 and YBa2_2Cu3_3O7_7. At one limit, O6_6, the system is an insulator, while at O7_7, a metal. This is analogous to the intrinsic and doping cases of semiconductors. The site selections for doping calcium and creating holes are also investigated by calculating the heat of solution. In a continuum treatment, the volume of formation of doping calcium at Y-sites is computed. It is then applied to study the segregation of calcium ions to grain boundaries in the Y-123 compound. The influences of the segregation of calcium ions on space charge profiles are finally studied to provide one guide for understanding the improvement of transport properties by doping calcium at grain boundaries in Y-123 compound.Comment: 13 pages, 5 figure

    MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference

    Full text link
    OBJECTIVE: To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. METHODS: Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. RESULTS: Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective (κ = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). CONCLUSION: The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. KEY POINTS: MRI may be used to assess the cortical bone of the TMJ. • Depiction of cortical bone is best on 3D FSPGR sequences. • MRI can assess treatment response in patients with TMJ abnormalities

    A weak characterization of slow variables in stochastic dynamical systems

    Full text link
    We present a novel characterization of slow variables for continuous Markov processes that provably preserve the slow timescales. These slow variables are known as reaction coordinates in molecular dynamical applications, where they play a key role in system analysis and coarse graining. The defining characteristics of these slow variables is that they parametrize a so-called transition manifold, a low-dimensional manifold in a certain density function space that emerges with progressive equilibration of the system's fast variables. The existence of said manifold was previously predicted for certain classes of metastable and slow-fast systems. However, in the original work, the existence of the manifold hinges on the pointwise convergence of the system's transition density functions towards it. We show in this work that a convergence in average with respect to the system's stationary measure is sufficient to yield reaction coordinates with the same key qualities. This allows one to accurately predict the timescale preservation in systems where the old theory is not applicable or would give overly pessimistic results. Moreover, the new characterization is still constructive, in that it allows for the algorithmic identification of a good slow variable. The improved characterization, the error prediction and the variable construction are demonstrated by a small metastable system

    How content analysis may complement and extend the insights of discourse analysis: an example of research on constructions of abortion in South African newspapers 1978–2005

    Get PDF
    Although discourse analysis is a well-established qualitative research methodology, little attention has been paid to how discourse analysis may be enhanced through careful supplementation with the quantification allowed in content analysis. In this article, we report on a research study that involved the use of both Foucauldian discourse analysis (FDA) and directed content analysis based on social constructionist theory and our qualitative research findings. The research focused on the discourses deployed, and the ways in which women were discursively positioned, in relation to abortion in 300 newspaper articles, published in 25 national and regional South African newspapers over 28 years, from 1978 to 2005. While the FDA was able to illuminate the constitutive network of power relations constructing women as subjects of a particular kind, questions emerged that were beyond the scope of the FDA. These questions concerned understanding the relative weightings of various discourses and tracing historical changes in the deployment of these discourses. In this article, we show how the decision to combine FDA and content analysis affected our sampling methodology. Using specific examples, we illustrate the contribution of the FDA to the study. Then, we indicate how subject positioning formed the link between the FDA and the content analysis. Drawing on the same examples, we demonstrate how the content analysis supplemented the FDA through tracking changes over time and providing empirical evidence of the extent to which subject positionings were deployed

    Lateral Trunk Motion and Knee Pain in Osteoarthritis of the Knee: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with osteoarthritis of the knee may change their gait in an attempt to reduce loading of the affected knee, thereby reducing pain. Especially changes in lateral trunk motion may be potentially effective, since these will affect the position of the centre of mass relative to the knee, enabling minimization of the load on the knee and thereby knee pain. The aim of the study was to test the hypothesis that a higher level of knee pain is associated with higher lateral trunk motion in patients with knee OA.</p> <p>Methods</p> <p>Fifty-two patients with OA of the knee were tested. Lateral trunk motion was measured during the stance phase of walking with an optoelectronic motion analysis system and a force plate. Knee pain was measured with the VAS and the WOMAC pain questionnaire. Regression analyses were performed to assess the relationship between lateral trunk motion and knee pain.</p> <p>Results</p> <p>It was shown that in bivariate analyses knee pain was not associated with lateral trunk motion. In regression analyses, pain was associated with more lateral trunk motion. In addition, more lateral trunk motion was associated with younger age, being female, higher self-reported knee stiffness and higher maximum walking speed.</p> <p>Conclusion</p> <p>Pain is associated with lateral trunk motion. This association is weak and is influenced by age, gender, self-reported stiffness and maximum walking speed.</p

    Intramedullary nails versus distal locking plates for fracture of the distal femur: results from the Trial of Acute Femoral Fracture Fixation (TrAFFix) randomised feasibility study and process evaluation

    Get PDF
    Objectives: This feasibility study and process evaluation assessed the likely success of a definitive trial of intramedullary fixation with locked retrograde nails versus extramedullary fixation with fixed angle plates for fractures of the distal femur.Design & setting: A multicentre, parallel, two-arm, randomised controlled feasibility study with an embedded process evaluation was conducted at seven NHS hospitals in England. Treatment was randomly allocated in 1:1 ratio, stratified by centre and chronic cognitive impairment. Participants, but not surgeons or research staff, were blinded to the allocation.Participants: Patients 18 years and older with a fracture of the distal femur, who their surgeon believed would benefit from internal fixation, were eligible to take part.Participants were allocated to receive either a retrograde intramedullary nail or an anatomical locking plate.Outcomes: The primary outcomes for this feasibility study were the recruitment rate and completion rate of the EQ-5D-5L at 4?months post-randomisation. Baseline characteristics, disability rating index, quality of life scores, measurements of social support and self-efficacy, resource use and radiographic assessments were also collected. The views of patients and staff were collected during interviews.Results: Recruitment and data completion were lower than expected. 23 of 82 eligible patients were recruited (nail, 11; plate, 12). The recruitment rate was estimated as 0.42 (95% CI 0.27 to 0.62) participants per centre-month. Data completeness of the EQ-5D-5L at 4?months was 61 per cent (95%?CI 43% to 83%). The process evaluation demonstrated that the main barriers to recruitment were variation in treatment pathways across centres, lack of surgeon equipoise and confidence in using both interventions and newly formed research cultures that lacked cohesion.Conclusions: A modified trial design, with embedded recruitment support intervention, comparing functional outcome in cognitively intact adults who have sustained a fragility fracture of the distal femur is feasible

    Atomic scale strain relaxation in axial semiconductor III-V nanowire heterostructures

    Get PDF
    Combination of mismatched materials in semiconductor nanowire heterostructures offers a freedom of bandstructure engineering that is impossible in standard planar epitaxy. Nevertheless, the presence of strain and structural defects directly control the optoelectronic properties of these nanomaterials. Understanding with atomic accuracy how mismatched heterostructures release or accommodate strain, therefore, is highly desirable. By using atomic resolution high angle annular dark field scanning transmission electron microscopy combined with geometrical phase analyses and computer simulations, we are able to establish the relaxation mechanisms (including both elastic and plastic deformations) to release the mismatch strain in axial nanowire heterostructures. Formation of misfit dislocations, diffusion of atomic species, polarity transfer, and induced structural transformations are studied with atomic resolution at the intermediate ternary interfaces. Two nanowire heterostructure systems with promising applications (InAs/InSb and GaAs/GaSb) have been selected as key examples

    Characterizing early drug resistance-related events using geometric ensembles from HIV protease dynamics:

    Get PDF
    The use of antiretrovirals (ARVs) has drastically improved the life quality and expectancy of HIV patients since their introduction in health care. Several millions are still afflicted worldwide by HIV and ARV resistance is a constant concern for both healthcare practitioners and patients, as while treatment options are finite, the virus constantly adapts via complex mutation patterns to select for resistant strains under the pressure of drug treatment. The HIV protease is a crucial enzyme for viral maturation and has been a game changing drug target since the first application. Due to similarities in protease inhibitor designs, drug cross-resistance is not uncommon across ARVs of the same class

    CHAMPION: Chalmers Hierarchical Atomic, Molecular, Polymeric & Ionic Analysis Toolkit

    Get PDF
    We present CHAMPION: a software developed to automatically detect time-dependent bonds between atoms based on their dynamics, classify the local graph topology around them, and analyze the physicochemical properties of these topologies by statistical physics. In stark contrast to methodologies where bonds are detected based on static conditions such as cut-off distances, CHAMPION considers pairs of atoms to be bound only if they move together and act as a bound pair over time. Furthermore, the time-dependent global bond graph is possible to split into dynamically shifting connected components or subgraphs around a certain chemical motif and thereby allow the physicochemical properties of each such topology to be analyzed by statistical physics. Applicable to condensed matter and liquids in general, and electrolytes in particular, this allows both quantitative and qualitative descriptions of local structure, as well as dynamical processes such as speciation and diffusion. We present here a detailed overview of CHAMPION, including its underlying methodology, implementation and capabilities.Comment: 11 pages, 8 figure
    corecore