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On stable homotopy equivalences

by

R. R. Bruner, F. R. Cohen1, and C. A. McGibbon

A fundamental construction in the study of stable homotopy is the free infinite

loop space generated by a space X. This is the colimit QX = lim
−→

ΩnΣnX.

The ith homotopy group of QX is canonically isomorphic to the ith stable

homotopy group of X. Thus, one may obtain stable information about X by

obtaining topological results about QX. One such result is the Kahn-Priddy

theorem [7]. In another direction, Kuhn conjectured in [8] that the homotopy

type of QX determines the stable homotopy type of X. In this note we prove

his conjecture for a finite CW-complex X; that is, we prove the following.

Theorem If X and Y are finite CW -complexes, then QX and QY are ho-

motopy equivalent if and only if ΣnX and ΣnY are homotopy equivalent for

some sufficiently large integer n. 2

Of course, one direction of our theorem is obvious. A homotopy equiv-

alence ΣnX → ΣnY clearly induces a homotopy equivalence QX → QY .

The proof in the other direction has three steps. Here is a brief outline of

it. We begin with the case where X and Y are connected and we prove a

p-local version of our result for each prime p. In doing so, we use results of

Wilkerson, [11], to first express the stable p-local homotopy types of X and

Y as bouquets of prime retracts. The same sort of analysis is then carried

out, p-locally, on QX and QY , through an appropriate range of dimensions.

The assumption that QX and QY are homotopy equivalent then forces the

stable prime retracts of X(p) to match up with those of Y(p).

1Partially supported by NSF
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In the second step the spaces are still assumed to be connected. Here we

assemble the p-local results of step 1 using Mislin’s notion of the stable genus

of a space. The key ingredient in this step is Zabrodsky’s presentation of the

genus of certain spaces in terms of their self maps. The third step handles the

case when the spaces are not connected. Here the Segal conjecture is used to

show that X and Y must have the same number of path components.

In the final section we consider the related question of when {QΣnX} is

the only infinite delooping of QX among connective spectra. Examples are

provided showing that QX does not deloop uniquely in general. We also give

a result which implies 2-local uniqueness of deloopings in certain cases.

We thank Clarence Wilkerson for helpful comments on this project. Re-

sults of his, from [11], play a crucial role in our proof. We also thank the

referee for improvements in the exposition.

The connected p-local case

In this section we collect the results needed to prove the following.

Theorem 1 Let X and Y be connected finite CW -complexes. If QX and

QY are homotopy equivalent at a prime p then X and Y are stably homotopy

equivalent at p. 2

We start with a well known observation. Let ι and ǫ be used generically

to denote the unit and counit of the adjunction between Σn and Ωn, for

1 ≤ n ≤ ∞.

Lemma 2 If a space B is a retract of an n-fold suspension, where n ≥ 1,

then there is a lift θ, of ι over ǫ.
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ΣnΩnQB

?

ǫ

B -ι
QB 2

When splitting the suspensions of certain p-local spaces, we will need the

following definition from [11], wherein it is referred to as “H∗-prime”.

Definition Let X be a 1-connected p-local space of finite type. Then X is

said to be prime if for every self-map f : X → X, either

i) f induces an isomorphism in mod-p homology, or

ii) for every n, there exists an m such that the m-fold iterate of f induces

the zero map on Hi(X;Zp) for 0 < i ≤ n. 2

We will use the following facts from [11].

Theorem 3 (Wilkerson)

i) Any finite dimensional 1-connected p-local co-H-space is equivalent to a

wedge of prime spaces.

ii) If a 1-connected p-local space of finite type is equivalent to a wedge of

primes, then the prime wedge summands are unique up to order.

iii) A prime space which is a retract of a wedge of 1-connected p-local spaces

of finite type is a retract of one of the wedge summands. 2

Proofs of the p-local results

Proof of Lemma 2 Let B
f

−→ ΣnW
g

−→ B be maps such that gf ≃ 1.

The map θ = (ΣnΩnQg)(Σnι)f in the following diagram provides the needed

3



factorization ι = ǫθ.

ΣnW -Σnι
ΣnΩnQΣnW -ǫ

QΣnW

6
f

?

ΣnΩnQg

?

Qg

B -θ
ΣnΩnQB -ǫ

QB 2

Proof of Theorem 1 Let ψ : QX −→ QY be a homotopy equivalence where

X and Y are connected finite complexes. Fix a prime p and henceforth assume

that all nilpotent spaces in this proof have been localized at p. (Of course,

X and Y are not necessarily nilpotent, but they will become so after one

suspension.) We will not burden the notation with this p-local assumption.

Let n denote a fixed integer greater than both dim(X) and dim(Y ). By

Theorem 3, ΣnX and ΣnY decompose uniquely into wedges of prime retracts.

Let W denote the subbouquet of all prime retracts common to both spaces

and let X ′ and Y ′ denote the rest. That is, write

ΣnX ≃ W ∨X ′ and ΣnY ≃ W ∨ Y ′

where X ′ and Y ′ are assumed to have no nontrivial prime retracts in common.

Now consider the composition

ΣnX -Σn(ι)n Σn(QX)n -Σn(ψ)n Σn(QY )n -r ΣnY

where ( )n denotes the n-skeleton or restriction to it. The last map is

the restriction of a retraction of Σ∞QY onto Σ∞Y , which exists by Kahn’s

theorem [5]. In the stable range this map exists on the space level. Since X

and Y are connected, each of the maps in this sequence induces a homology

isomorphism in the lowest degree in which reduced homology for these spaces

does not vanish. Applying the same argument to the inverse of ψ, it follows

that the prime wedge summands of ΣnX and ΣnY of lowest connectivity

must have their homology mapped isomorphically by these composites, and

hence be common to both ΣnX and ΣnY . Assuming that X and Y are not
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contractible, it follows then that the subbouquet W is not empty, and that

the connectivity of X ′ and of Y ′ is strictly greater than that of W . We may

assume conn(X ′) ≤ conn(Y ′). Note that

ΣnQX ≃ ΣnΩnQΣnX

≃ ΣnΩnQ(W ∨X ′)

≃ ΣnΩn(QW ×QX ′)

≃ ΣnΩnQW ∨ ΣnΩnQX ′ ∨ Σn(ΩnQW ∧ ΩnQX ′).

Similarly,

ΣnQY ≃ ΣnΩnQW ∨ ΣnΩnQY ′ ∨ Σn(ΩnQW ∧ ΩnQY ′).

Now compare the 2n-skeletons of ΣnQX and ΣnQY . By Theorem 3,

they each split uniquely as a wedge of primes. Among these prime retracts

consider only those whose dimension is less than 2n. Since the restriction

of Σnψ and its inverse are at least (2n − 1)-equivalences on the skeleta in

question it follows that there is a one-to-one correspondence between the

primes of dimension less than 2n in Σn(QX)n and those in Σn(QY )n. From

the decomposition of ΣnQX and ΣnQY , obtained in terms of the summand

W , it follows that the primes of dimension less than 2n in

Σn(ΩnQX ′)n ∨ Σn(ΩnQW ∧ ΩnQX ′)n (1)

must coincide, up to order, with those in

Σn(ΩnQY ′)n ∨ Σn(ΩnQW ∧ ΩnQY ′)n (2)

Observe that the 2n-skeleton of QX ′ is just X ′ because X ′ is at least

n + 1-connected. Also, dim(X ′) < 2n since dim(X) < n. Thus, the map

θ of Lemma 2 factors through Σn(ΩnQX ′)n and provides a splitting of

Σn(ΩnQX ′)n into X ′ and another factor whose connectivity is higher than

that of X ′. (The latter claim follows by examining homology.) Similarly for

Y ′.
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Now let P be a prime in X ′ of minimal connectivity. It has dimension less

than 2n because X ′ does. It occurs in (1), and so it must also occur in (2). It

is not a retract of Y ′, by construction. It does not occur in the complement of

Y ′ in Σn(ΩnQY ′)n because that complement has connectivity higher than

that of Y ′ and hence higher than that of P . The connectivity of the second

wedge summand in (2) is easily seen to be

1 + conn(W )− n+ conn(Y ′) > conn(Y ′) ≥ conn(X ′) = conn(P )

so P cannot occur here either. Thus, no such prime P exists and we have

shown that X ′ ≃ ∗. Since the connectivity of Y ′ is no lower than that of

X ′, we must have Y ′ ≃ ∗ as well. 2

The connected integral case

The goal in this section is to prove the following.

Theorem 4 Let X and Y be connected finite CW -complexes. If QX is

homotopy equivalent to QY then X is stably homotopy equivalent to Y .

2

The proof of this theorem involves the genus G(X), of a space X, as

defined by Mislin [10]. Recall that if X is a nilpotent space of finite type

then G(X) is the set of all homotopy types [Y ] where Y is a nilpotent space

with finite type and Y(p) ≃ X(p) for each prime p. According to Wilkerson

[13], G(X) is a finite set when X is a simply connected finite complex. Since

localization commutes with suspension, there is an obvious map from G(X)

to G(ΣX). Define the stable genus of a finite complex X to be

Gs(X) = lim
−→

G(ΣnX).

It is not difficult to see that the stable genus of a finite complex X can be

identified with G(ΣnX) for n sufficiently large.
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Suppose now that QX ≃ QY . Then, of course, QX(p) ≃ QY(p) for

every prime p. By Theorem 1, X(p) is stably homotopy equivalent to Y(p) for

every prime p, and so Y ∈ Gs(X). Therefore to prove Theorem 4 it suffices

to prove the following lemma.

Lemma 5 If X is a finite complex, then the function

Φ : Gs(X) −→ G(QX)

that sends [Z] in G(ΣnX) to [ΩnQZ] in G(QX) is one-to-one. 2

Proof: To show that Φ is one-to-one, it suffices to show that the composite

Gs(X)
Φ

−→ G(QX) −→ G(QX(n))

is injective for some n. Here QX(n) denotes the Postnikov approximation of

QX through dimension n. It may be obtained by attaching cells to kill off

the homotopy groups of QX in dimensions greater than n. The second map

here sends a homotopy type [Z] in G(QX) to its Postnikov approximation

[Z(n)] in G(QX(n)).

Let W denote a connected H-space which has finite type and only finitely

many nonzero homotopy groups. The main result in Zabrodsky’s paper [14],

is an exact sequence

Et(W )
d

−→ (Z∗

t/± 1)ℓ −→ G(W ) −→ ∗

which is defined as follows. In the middle term, Z∗

t denotes the group

of units in the ring of integers modulo t. The exponent ℓ is the number

of positive degrees k, in which the module of indecomposables in rational

cohomology,

QHk(W ;Q) 6= 0.
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If there is more than one such degree k, order them k1 < · · · < kℓ. The

number t depends upon the space W . The prime divisors of t include those

primes p, for which there is p-torsion in either the homotopy groups of W , or

in the integral homology groups of W through degree kℓ, or in the cokernel

of the Hurewicz homomorphism, through the same range. Zabrodsky gives a

description of the smallest possible exponents νp(t), as well. However, for our

purposes the exact value of t is unimportant; indeed given any one choice of

t, any integer multiple of it works equally well in this sequence.

The first term in the sequence, Et(W ), denotes the monoid (under

composition) of homotopy classes of those self-maps of W , which are local

equivalences at each prime divisor of t. The function d then assigns to each

such map a sequence of determinants - or rather the image of such a sequence

in the middle group. The jth determinant here is that of the linear transfor-

mation on QHkj(W ;Q) induced by the map f . Zabrodsky shows that this

image is a subgroup and that the quotient is isomorphic as an abelian group

to G(W ).

If W is a finite complex in the stable range (and hence a co-H-space),

there is a similar presentation of G(W ). This was first proved by Davis in

[4]; a much shorter proof of this was subsequently given in [9]. Take n to be

larger than dim(X) so that ΣnX is in the stable range.

The map Φ fits into a commutative diagram

Et(Σ
nX)

d′

−→ (Z∗

t/± 1)ℓ −→ Gs(X) −→ ∗

? ?

=

?

Φ

Et(QX
(n))

d
−→ (Z∗

t/± 1)ℓ −→ G(QX(n)) −→ ∗

whose left hand side sends a self-map f of ΣnX to the self-map (ΩnQf)(n)

of QX(n). Recall that QX(n) denotes the Postnikov approximation for

QX through dimension n. To show Φ is one-to-one it suffices to show that
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the image of d is contained in the image of d′. Thus, given a self map f , of

QX(n), it suffices to produce a self map of ΣnX with the same determinant

sequence as f , up to sign. As mentioned earlier, we may view QX(n) as a

cell complex obtained by attaching to QX cells of dimension n+2 and higher

and so there is an equivalence of skeleta

(QX(n))n ≃ (QX)n.

There is also a retraction

Σn(QX)n
r

−→ ΣnX.

Therefore, given a self-map

QX(n) f
−→ QX(n)

we can take the composition

Σn

[
X

ι
−→ QX −→ QX(n) f

−→ QX(n)
]

n

r
−→ ΣnX

It is straightforward to check that this map has, up to signs, the same deter-

minant sequence as f . This completes the proof of Lemma 5.

The non-connected case

Suppose now that X has path components X0, . . . , Xn, where n ≥ 1. It

is known, (e.g., see [1]), that in this case,

QX ≃ QX0 × · · · ×QXn × (QS0)n.

Let B denote the path component of QS0 that contains the constant loop. It

is well known that QS0 ≃ Z × B. Thus each path component of QX has

the homotopy type of

QX0 × · · · ×QXn ×Bn.
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Assume now that QX ≃ QY where Y is another finite complex. Obviously

then, QY , and hence Y , are not connected either. Each path component of

QX must be homotopy equivalent to a path component of QY . Thus we may

assume that

QX0 ×· · ·×QXn ×Bn ≃ QY0 ×· · ·×QYm ×Bm (3)

where each Xi and Yi is a connected finite complex. We first claim that

n = m. To see this, assume m < n and take the p-completion of both sides

of (3). Completions commute with products. Moreover, after completing

we can cancel the p-completion of Bm from both sides. This follows using

the unique factorization results of [11] for p-local H-spaces with only finitely

many nonzero homotopy groups and the results of [12] which imply that a

p-complete homotopy type is determined by its sequence of n-types. Thus we

have

(QX0 ×· · ·×QXn × Bn−m)̂p ≃ (QY0 ×· · ·×QYm)̂p (4)

Since each Yi is a finite connected complex, the Segal conjecture (or rather its

affirmation, [3]) implies that there are no essential maps from BZp into QYi

and hence there are no essential maps of BZp into the right hand side. The

Segal conjecture 2 also asserts that there are many essential maps from BZp

into B, and hence into the left hand side of (4). From this contradiction we

conclude that m = n.

Return now to equation (3), localize at p, and take the Postnikov approx-

imation of both sides, through dimension d, where d exceeds the dimensions

of X and Y . Results from [11], essentially the Eckmann-Hilton dual of The-

orem 3, quoted earlier, allow us to cancel (Bn)(d) from both sides. We are

left with

(QX0 ×· · ·×QXn)
(d) ≃ (QY0 ×· · ·×QYn)

(d). (5)

2Of course, the Kahn-Priddy theorem could have been used here just as well.
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Notice that the left side has the form (Q(X0 ∨ · · · ∨ Xn))
(d) and similarly

for the right side. Thus both sides have the form (QW )(d) where W is a

connected complex. If we restrict to the d-skeleton of both sides of (5) and

suspend d times, it follows from Theorem 1 that ∨iXi and ∨iYi are stably

p-equivalent. Hence these two bouquets are in the same stable genus and, by

Lemma 5, it follows that they are stably homotopy equivalent. Since

ΣkX ≃ (
n∨

i=0

ΣkXi) ∨ (
n∨
Sk),

when k ≥ 1, and a similar expression holds for ΣkY , it follows that X and Y

are stably homotopy equivalent. 2

When does QX deloop uniquely ?

The results obtained so far could be regarded as a first step toward answering

the question just raised. This general question seems harder to answer.

Example 6 The space QS1 has at least two distinct connective deloopings;

namely {QSn} and {K(Z, n)×Bn−1F}, where F is the fiber of the retraction

QS1 → S1.

The key property here is that the circle S1 is an infinite loop space. However,

this method will not produce many more examples, since Hubbuck has shown

that a finite complex which is a homotopy commutative H-space, for example,

an infinite loop space, must be a torus [6].

If we consider QX for infinite complexes X, the Kahn-Priddy theorem,

[7], provides some further examples of non-uniqueness of deloopings.

Example 7 Let Sp be the symmetric group on p letters. The space QΣBSp

has at least two distinct connective deloopings, because it is p-equivalent (as

spaces but not as infinite loop spaces) to the product Q̃S1 × F ′, where Q̃S1

denotes the universal cover of QS1 and F ′ is the fiber of a p-local infinite loop

map QΣBSp → Q̃S1.

The next theorem shows, on the other hand, that there are many examples
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where QX admits precisely one infinite loop structure, provided X is a double

suspension. We say that a connected space is atomic if any self map of it which

induces an isomorphism on its first nonzero reduced integral homology group

is a homotopy equivalence.

Theorem 8 Let X be a 1-connected, 2-local, stably atomic finite CW -

complex. Then QΣ2X has only one connective infinite delooping. 2

Proof: It was shown in [2] that QΣ2X is atomic when X satisfies the

hypothesis of this theorem. Now assume that Y is a connected infinite loop-

space and that

g : QΣ2X −→ Y

is a homotopy equivalence. We need to produce an infinite loop map from

QΣ2X to Y that is also a homotopy equivalence. Extend the composition

Σ2X -ι
QΣ2X -g

Y

to an infinite loop map θ : QΣ2X −→ Y . The composite

QΣ2X -θ
Y -g−1

QΣ2X

is an isomorphism on bottom dimensional homology, and hence an equivalence

since QΣ2X is atomic. Since g and g−1θ are homotopy equivalences, so

is θ. 2

In fact, calculations suggest the following conjecture.

Conjecture 9 Let X be a finite CW -complex. Then QΣ2X has only

one connective infinite delooping. 2
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