11 research outputs found

    What Works? Collaborative Police and Health interventions for mental health distress

    Get PDF
    The police coming into contact with those in mental health distress has been identified as a key issue in the Mental Health Strategy 2017-2027, Policing 2026, and Justice in Scotland: Vision and Priorities 2017. It is also a main theme for the newly established Health and Justice Collaboration Improvement Board. Research Aims and Overview This evidence review looks at collaborative interventions which help support people in mental health distress. It aims to outline 'what works' when individuals present in mental health distress to the police. The key objective is to examine interventions that have been utilised internationally and, where evaluations are available, identify what aspects of the approach work well/not so well

    Application of Meta-Analysis and Machine Learning Methods to the Prediction of Methane Production from In Vitro Mixed Ruminal Micro-Organism Fermentation

    Get PDF
    peer-reviewedIn vitro gas production systems are utilized to screen feed ingredients for inclusion in ruminant diets. However, not all in vitro systems are set up to measure methane (CH4) production, nor do all publications report in vitro CH4. Therefore, the objective of this study was to develop models to predict in vitro CH4 production from total gas and volatile fatty acid (VFA) production data and to identify the major drivers of CH4 production in these systems. Meta-analysis and machine learning (ML) methodologies were applied to a database of 354 data points from 11 studies to predict CH4 production from total gas production, apparent DM digestibility (DMD), final pH, feed type (forage or concentrate), and acetate, propionate, butyrate and valerate production. Model evaluation was performed on an internal dataset of 107 data points. Meta-analysis results indicate that equations containing DMD, total VFA production, propionate, feed type and valerate resulted in best predictability of CH4 on the internal evaluation dataset. The ML models far exceeded the predictability achieved using meta-analysis, but further evaluation on an external database would be required to assess generalization ability on unrelated data. Between the ML methodologies assessed, artificial neural networks and support vector regression resulted in very similar predictability, but differed in fitting, as assessed by behaviour analysis. The models developed can be utilized to estimate CH4 emissions in vitro

    Effects of biochar source, level of inclusion and particle size on in vitro dry matter disappearance, total gas and methane production and ruminal fermentation parameters in a barley silage-based diet

    No full text
    This study evaluated the effects of biochar differing in source, inclusion level, and particle size on DM disappearance (DMD), total gas and methane (CH4) production, and ruminal fermentation in a barley silage-based diet. The seven biochar products used were coconut (CP001 and CP014) or pine (CP002, CP015, CP016, CP023, CP024)-based. Experiment 1 evaluated these biochars at 4.5, 13.5 and 22.5% level of diet inclusion, whereas Experiment 2 evaluated CP002, CP016 and CP023 at 2.25 and 4.50% of the diet atThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Demonstrating the Effect of Forage Source on the Carbon Footprint of a Canadian Dairy Farm Using Whole-Systems Analysis and the Holos Model: Alfalfa Silage vs. Corn Silage

    No full text
    Before recommending a feeding strategy for greenhouse gas (GHG) mitigation, it is important to conduct a holistic assessment of all related emissions, including from those arising from feed production, digestion of these feeds, managing the resulting manure, and other on-farm production processes and inputs. Using a whole-systems approach, the Holos model, and experimentally measured data, this study compares the effects of alfalfa silage- versus corn silage-based diets on GHG estimates in a simulated Canadian dairy production system. When all emissions and sources are accounted for, the differences between the two forage systems in terms of overall net GHG emissions were minimal. Utilizing the functional units of milk, meat, and total energy in food products generated by the system, the comparison demonstrates very little difference between the two silage production systems. However, the corn silage system generated 8% fewer emissions per kg of protein in food products as compared to the alfalfa silage system. Exploratory analysis of the impact of the two silage systems on soil carbon showed alfalfa silage has greater potential to store carbon in the soil. This study reinforces the need to utilize a whole-systems approach to investigate the interrelated effects of management choices. Reported GHG reduction factors cannot be simply combined additively because the interwoven effects of management choices cascade through the entire system, sometimes with counter-intuitive outcomes. It is necessary to apply this whole-systems approach before implementing changes in management intended to reduce GHG emissions and improve sustainability

    Evaluation of biochar products at two inclusion levels on ruminal in vitro methane production and fermentation parameters in a Timothy-hay based diet

    No full text
    G.F. Mengistu., McAllister T.A., Tamayao, P.J., Ominski, K.H., Ribeiro Jr, G.O., Okine, E.K., McGeough, E.J. This study evaluated the effects of seven biochar products at two levels of inclusion (2.25 or 4.50 % diet DM) on DM disappearance (DMD), cumulative gas and methane (CH4) production, ammonia-nitrogen and VFA production from Timothy grass hay over 48 h of incubation. Biochar did not affect gas and CH4 production (P≥0.17) nor the DMD or ruminal fermentation (P≥0.12). In conclusion, the biochar, irrespective of level of inclusion, did not exhibit potential to mitigate CH4 emission in a grass hay diet.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Interrelationships of Fiber-Associated Anaerobic Fungi and Bacterial Communities in the Rumen of Bloated Cattle Grazing Alfalfa

    No full text
    Frothy bloat is major digestive disorder of cattle grazing alfalfa pastures. Among the many factors identified to contribute to the development of frothy bloat, the disruption of rumen microbiota appears to be of central importance. Anaerobic rumen fungi (ARF) play an important role in sequential breakdown and fermentation of plant polysaccharides and promote the physical disruption of plant cell walls. In the present study, we investigated the dynamics of ARF during the development of alfalfa-induced frothy bloat and in response to bloat preventive treatments. By sequencing the internal transcribed spacer (ITS1) region of metagenomic DNA from the solid fraction of rumen contents, we were able to identify eight distinct genera of ARF, including Neocallimastix, Caecomyces, Orpinomyces, Piromyces, Cyllamyces, Anaeromyces, Buwchfawromyces, and unclassified Neocallimastigaceae. Overall, transition of steers from a baseline hay diet to alfalfa pastures was associated with drastic changes in the composition of the fungal community, but the overall composition of ARF did not differ (p > 0.05) among bloated and non-bloated steers. A correlation network analysis of the proportion of ARF and ruminal bacterial communities identified hub fungal species that were negatively correlated with several bacterial species, suggesting the presence of inter-kingdom competition among these rumen microorganisms. Interestingly, the number of negative correlations among ARF and bacteria decreased with frothy bloat, indicating a potential disruption of normal microbial profiles within a bloated rumen ecosystem. A better understanding of fungal-bacterial interactions that differ among bloated and non-bloated rumen ecosystem could advance our understanding of the etiology of frothy bloat

    Methane emissions, feed intake and total tract digestibility in lambs fed diets differing in fat content and fibre digestibility

    No full text
    This study determined enteric methane (CH4) emissions, intake, and apparent total tract digestibility of diets varying in fibre digestibility and fat content. A Latin square design with two levels of fat [2.0% and 6.0% dry matter (DM); low and high] and two levels of fibre digestibility [low fibre digestibility (LFbD) or high fibre digestibility (HFbD)] was used. Higher dry matter intake (DMI) was observed (P < 0.01) for LFbD versus HFbD diets (2.56 vs. 2.14 kg d−1, respectively), with no effect of fat. Fibre, DM, and organic matter digestibility were higher (P < 0.01) for HFbD than LFbD diets. Increasing fat did not affect intake or digestibility of DM or dietary constituents but there was a fibre digestibility × fat content interaction (P < 0.01) for fat digestibility. There was also a fat content × fibre digestibility interaction (P < 0.05) for CH4 (g kg−1 DMI, organic matter intake, neutral detergent fibre intake, and percent gross energy intake), with emissions being higher when fat was added to the HFbD than the LFbD diet. The CH4 emissions per kilogram of neutral detergent fibre (NDF) digested were higher (P < 0.01) for the HFbD than the LFbD diet. Methane emissions were increased by the HFbD diet, but inclusion of fat had a differential impact on CH4 emissions as a proportion of DMI or NDF intake in diets differing in fibre digestibility.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Effect of changes in management practices and animal performance on ammonia emissions from Canadian beef production in 1981 as compared to 2011

    No full text
    The present study compared ammonia (NH3) emissions from Canadian beef production in 1981–2011. Temporal and regional differences in cattle categories, feed types and management systems, average daily gains, carcass weights, and manure handling practices were considered. A scenario-based sensitivity analysis in 2011 estimated the impact of substituting corn dried distillers’ grains with solubles (DDGS) for grain in feedlot diets. On average, 22% of the total nitrogen (N) intake was lost as ammoniacal nitrogen (NH3-N) in both years. Manure emission sources were consistent across years, averaging 12%, 40%, 28%, and 21% for grazing, confinement, storage, and land spreading, respectively. Emissions per animal in 1981 and 2011 were 16.0 and 18.4 kg NH3 animal−1 yr−1, respectively. On an intensity basis, kilogram of NH3 emitted per kilogram of beef decreased 20%, from 0.17 in 1981 to 0.14 in 2011. This reduction was attributed to increases in reproductive efficiency, average daily gain and carcass weight, and improved breeding herd productivity. In 2011, substituting DDGS for grain in feedlot diets increased total NH3 emissions and losses per animal. Although addition of by-products from the bioethanol industry can lower diet costs, it will be at the expense of an increase in NH3 emissions.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Effect of pine-based biochars with differing physiochemical properties on methane production, ruminal fermentation, and rumen microbiota in an artificial rumen (RUSITEC) fed barley silage

    No full text
    This study investigated the effects of three pine-based biochar products on nutrient disappearance, total gas and methane (CH4) production, rumen fermentation, microbial protein synthesis and rumen microbiota in a rumen simulation technique (RUSITEC) fed a barley silage-based total mixed ration (TMR). Treatments consisted of 10 g TMR supplemented with no biochar (control), and three different biochars (CP016, CP024 and CP028) included at 20 g kg -1 DM. Treatments were assigned to 16 fermenters (n = 4 per treatment) in two RUSITEC units in a randomized block design for a 17 d experimental period. Data were analyzed using Mixed procedure in SAS, with treatment and day of sampling as fixed effects and RUSITEC unit and fermenters as random effects. Biochar did not affect nutrient disappearance (P > 0.05), nor total gas or CH4, irrespective of unit of expression. The VFA, NH3-N, total protozoa and microbial protein synthesis were not affected by biochar inclusion (P > 0.05). Alpha and beta diversity and rumen microbiota families were not affected by biochar inclusion (P > 0.05). In conclusion, biochar did not reduce CH4 emissions nor affect nutrient disappearance, rumen fermentation, microbial protein synthesis or rumen microbiota in the RUSITEC.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore