12 research outputs found

    Cyclooxygenase-1 and -2 modulate sweating but not cutaneous vasodilation during exercise in the heat in young men

    Get PDF
    We recently reported that the nonselective cyclooxygenase (COX) inhibitor ketorolac attenuated sweating but not cutaneous vasodilation during moderate‐intensity exercise in the heat. However, the specific contributions of COX‐1 and COX‐2 to the sweating response remained to be determined. We tested the hypothesis that COX‐1 but not COX‐2 contributes to sweating with no role for either COX isoform in cutaneous vasodilation during moderate‐intensity exercise in the heat. In thirteen young males (22 ± 2 years), sweat rate and cutaneous vascular conductance were measured at three forearm skin sites that were continuously treated with (1) lactated Ringer\u27s solution (Control), (2) 150 μmmol·L−1 celecoxib, a selective COX‐2 inhibitor, or (3) 10 mmol L−1 ketorolac, a nonselective COX inhibitor. Participants first rested in a non heat stress condition (≥85 min, 25°C) followed by a further 70‐min rest period in the heat (35°C). They then performed 50 min of moderate‐intensity cycling (~55% peak oxygen uptake) followed by a 30‐min recovery period. At the end of exercise, sweat rate was lower at the 150 μmol·L−1 celecoxib (1.51 ± 0.25 mg·min−1·cm−2) and 10 mmol·L−1 ketorolac (1.30 ± 0.30 mg·min−1·cm−2) treated skin sites relative to the Control site (1.89 ± 0.27 mg·min−1·cm−2) (both P ≤ 0.05). Additionally, sweat rate at the ketorolac site was attenuated relative to the celecoxib site (P ≤ 0.05). Neither celecoxib nor ketorolac influenced cutaneous vascular conductance throughout the experiment (both P > 0.05). We showed that both COX‐1 and COX‐2 contribute to sweating but not cutaneous vasodilation during moderate‐intensity exercise in the heat in young men

    Development of a 6 GHz RF-EMF Exposure System for Investigating Human Skin Temperature Responses: Characterization, Integration, and Pilot Testing

    No full text
    We developed a radiofrequency electromagnetic field (RF-EMF) exposure system to investigate human skin temperature responses to localized exposures. The system was designed to project a 6 GHz RF-EMF beam with enough energy to rapidly increase peak local skin temperature on the human forearm from a baseline of 30–32°C to \sim 38°C within 6 min. First, the RF-EMF exposure conditions were characterized using computer simulations to confirm that the antenna produced the desired spot size (4 cm) and resultant temperature rise in the skin. ANSYS-HFSS and Sim4Life electromagnetic and thermal simulations were performed to fully characterize the relation between electromagnetic physics and the bioheat thermal conduction problem. Next, an open-ended waveguide antenna was integrated with other hardware peripherals to comprise the full RF-EMF exposure system. Finally, human pilot testing was conducted while participants were seated comfortably with the antenna 5 cm above the skin surface on the volar (i.e. palm side) forearm. Local skin temperatures were monitored continuously with a thermal camera, which automatically identified and continuously tracked the peak skin temperature under the projected beam. Both electromagnetic and thermal data plots are presented to illustrate the bioelectromagnetic response for the exposure system. Future experimental studies using this system will examine individual and environmental factors that may influence local human skin temperature responses to RF-EMF exposures on the forearm and other body regions

    A genetic interaction network model of a complex neurological disease.

    No full text
    Absence epilepsy (AE) is a complex, heritable disease characterized by a brief disruption of normal behavior and accompanying spike-wave discharges (SWD) on the electroencephalogram. Only a handful of genes has been definitively associated with AE in humans and rodent models. Most studies suggest that genetic interactions play a large role in the etiology and severity of AE, but mapping and understanding their architecture remains a challenge, requiring new computational approaches. Here we use combined analysis of pleiotropy and epistasis (CAPE) to detect and interpret genetic interactions in a meta-population derived from three C3H × B6J strain crosses, each of which is fixed for a different SWD-causing mutation. Although each mutation causes SWD through a different molecular mechanism, the phenotypes caused by each mutation are exacerbated on the C3H genetic background compared with B6J, suggesting common modifiers. By combining information across two phenotypic measures - SWD duration and frequency - CAPE showed a large, directed genetic network consisting of suppressive and enhancing interactions between loci on 10 chromosomes. These results illustrate the power of CAPE in identifying novel modifier loci and interactions in a complex neurological disease, toward a more comprehensive view of its underlying genetic architecture. Genes Brain Behav 2014 Nov; 13(8):831-40

    Separate and combined effects of K Ca

    No full text

    Cognitive Performance during a 24-Hour Cold Exposure Survival Simulation

    No full text
    Survivor of a ship ground in polar regions may have to wait more than five days before being rescued. Therefore, the purpose of this study was to explore cognitive performance during prolonged cold exposure. Core temperature (Tc) and cognitive test battery (CTB) performance data were collected from eight participants during 24 hours of cold exposure (7.5°C ambient air temperature). Participants (recruited from those who have regular occupational exposure to cold) were instructed that they could freely engage in minimal exercise that was perceived to maintaining a tolerable level of thermal comfort. Despite the active engagement, test conditions were sufficient to significantly decrease Tc after exposure and to eliminate the typical 0.5–1.0°C circadian rise and drop in core temperature throughout a 24 h cycle. Results showed minimal changes in CTB performance regardless of exposure time. Based on the results, it is recommended that survivors who are waiting for rescue should be encouraged to engage in mild physical activity, which could have the benefit of maintaining metabolic heat production, improve motivation, and act as a distractor from cold discomfort. This recommendation should be taken into consideration during future research and when considering guidelines for mandatory survival equipment regarding cognitive performance
    corecore