49 research outputs found

    IL-27 signaling activates skin cells to induce innate antiviral proteins and protects against Zika virus infection

    Get PDF
    In the skin, antiviral proteins and other immune molecules serve as the first line of innate antiviral defense. Here, we identify and characterize the induction of cutaneous innate antiviral proteins in response to IL-27 and its functional role during cutaneous defense against Zika virus infection. Transcriptional and phenotypic profiling of epidermal keratinocytes treated with IL-27 demonstrated activation of antiviral proteins OAS1, OAS2, OASL, and MX1 in the skin of both mice and humans. IL-27–mediated antiviral protein induction was found to occur in a STAT1- and IRF3-dependent but STAT2-independent manner. Moreover, using IL27ra mice, we demonstrate a significant role for IL-27 in inhibiting Zika virus morbidity and mortality following cutaneous, but not intravenous, inoculation. Together, our results demonstrate a critical and previously unrecognized role for IL-27 in cutaneous innate antiviral immunity against Zika virus

    The Earth: Plasma Sources, Losses, and Transport Processes

    Get PDF
    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    A new global database for assessing the vulnerability of coastal zones to sea-level rise

    No full text
    A new global coastal database has been developed within the context of the DINAS-COAST project. The database covers the world's coasts, excluding Antarctica, and includes information on more than 80 physical, ecological, and socioeconomic parameters of the coastal zone. The database provides the base data for the Dynamic Interactive Vulnerability Assessment modelling tool that the DINAS-COAST project has produced. In order to comply with the requirements of the modelling tool, it is based on a data model in which all information is referenced to more than 12,000 linear coastal segments of variable length. For efficiency of data storage, six other geographic features (administrative units, countries, rivers, tidal basins or estuaries, world heritage sites, and climate grid cells) are used to reference some data, but all are linked to the linear segment structure. This fundamental linear data structure is unique for a global database and represents an efficient solution to the problem of representing and storing coastal data. The database has been specifically designed to support impact and vulnerability analysis to sea-level rise at a range of scales up to global. Due to the structure, consistency, user-friendliness, and wealth of information in the database, it has potential wider application to analysis and modelling of the world's coasts, especially at regional to global scales

    More public education and more intubationists will prevent prehospital deaths

    No full text
    A new global coastal database has been developed within the context of the DINAS-COAST project. The database covers the world's coasts, excluding Antarctica, and includes information on more than 80 physical, ecological, and socioeconomic parameters of the coastal zone. The database provides the base data for the Dynamic Interactive Vulnerability Assessment modelling tool that the DINAS-COAST project has produced. In order to comply with the requirements of the modelling tool, it is based on a data model in which all information is referenced to more than 12,000 linear coastal segments of variable length. For efficiency of data storage, six other geographic features (administrative units, countries, rivers, tidal basins or estuaries, world heritage sites, and climate grid cells) are used to reference some data, but all are linked to the linear segment structure. This fundamental linear data structure is unique for a global database and represents an efficient solution to the problem of representing and storing coastal data. The database has been specifically designed to support impact and vulnerability analysis to sea-level rise at a range of scales up to global. Due to the structure, consistency, user-friendliness, and wealth of information in the database, it has potential wider application to analysis and modelling of the world's coasts, especially at regional to global scale
    corecore