5 research outputs found

    Crowdsourcing for translational research: analysis of biomarker expression using cancer microarrays

    Get PDF
    Background: Academic pathology suffers from an acute and growing lack of workforce resource. This especially impacts on translational elements of clinical trials, which can require detailed analysis of thousands of tissue samples. We tested whether crowdsourcing – enlisting help from the public – is a sufficiently accurate method to score such samples. Methods: We developed a novel online interface to train and test lay participants on cancer detection and immunohistochemistry scoring in tissue microarrays. Lay participants initially performed cancer detection on lung cancer images stained for CD8, and we measured how extending a basic tutorial by annotated example images and feedback-based training affected cancer detection accuracy. We then applied this tutorial to additional cancer types and immunohistochemistry markers – bladder/ki67, lung/EGFR, and oesophageal/CD8 – to establish accuracy compared with experts. Using this optimised tutorial, we then tested lay participants’ accuracy on immunohistochemistry scoring of lung/EGFR and bladder/p53 samples. Results: We observed that for cancer detection, annotated example images and feedback-based training both improved accuracy compared with a basic tutorial only. Using this optimised tutorial, we demonstrate highly accurate (>0.90 area under curve) detection of cancer in samples stained with nuclear, cytoplasmic and membrane cell markers. We also observed high Spearman correlations between lay participants and experts for immunohistochemistry scoring (0.91 (0.78, 0.96) and 0.97 (0.91, 0.99) for lung/EGFR and bladder/p53 samples, respectively). Conclusions: These results establish crowdsourcing as a promising method to screen large data sets for biomarkers in cancer pathology research across a range of cancers and immunohistochemical stains

    Crowdsourcing the General Public for Large Scale Molecular Pathology Studies in Cancer

    Get PDF
    Background: Citizen science, scientific research conducted by non-specialists, has the potential to facilitate biomedical research using available large-scale data, however validating the results is challenging. The Cell Slider is a citizen science project that intends to share images from tumors with the general public, enabling them to score tumor markers independently through an internet-based interface. Methods: From October 2012 to June 2014, 98,293 Citizen Scientists accessed the Cell Slider web page and scored 180,172 sub-images derived from images of 12,326 tissue microarray cores labeled for estrogen receptor (ER). We evaluated the accuracy of Citizen Scientist's ER classification, and the association between ER status and prognosis by comparing their test performance against trained pathologists. Findings: The area under ROC curve was 0.95 (95% CI 0.94 to 0.96) for cancer cell identification and 0.97 (95% CI 0.96 to 0.97) for ER status. ER positive tumors scored by Citizen Scientists were associated with survival in a similar way to that scored by trained pathologists. Survival probability at 15 years were 0.78 (95% CI 0.76 to 0.80) for ER-positive and 0.72 (95% CI 0.68 to 0.77) for ER-negative tumors based on Citizen Scientists classification. Based on pathologist classification, survival probability was 0.79 (95% CI 0.77 to 0.81) for ER-positive and 0.71 (95% CI 0.67 to 0.74) for ER-negative tumors. The hazard ratio for death was 0.26 (95% CI 0.18 to 0.37) at diagnosis and became greater than one after 6.5 years of follow-up for ER scored by Citizen Scientists, and 0.24 (95% CI 0.18 to 0.33) at diagnosis increasing thereafter to one after 6.7 (95% CI 4.1 to 10.9) years of follow-up for ER scored by pathologists. Interpretation: Crowdsourcing of the general public to classify cancer pathology data for research is viable, engages the public and provides accurate ER data. Crowdsourced classification of research data may offer a valid solution to problems of throughput requiring human input

    High-throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium.

    Get PDF
    Automated methods are needed to facilitate high-throughput and reproducible scoring of Ki67 and other markers in breast cancer tissue microarrays (TMAs) in large-scale studies. To address this need, we developed an automated protocol for Ki67 scoring and evaluated its performance in studies from the Breast Cancer Association Consortium. We utilized 166 TMAs containing 16,953 tumour cores representing 9,059 breast cancer cases, from 13 studies, with information on other clinical and pathological characteristics. TMAs were stained for Ki67 using standard immunohistochemical procedures, and scanned and digitized using the Ariol system. An automated algorithm was developed for the scoring of Ki67, and scores were compared to computer assisted visual (CAV) scores in a subset of 15 TMAs in a training set. We also assessed the correlation between automated Ki67 scores and other clinical and pathological characteristics. Overall, we observed good discriminatory accuracy (AUC = 85%) and good agreement (kappa = 0.64) between the automated and CAV scoring methods in the training set. The performance of the automated method varied by TMA (kappa range= 0.37-0.87) and study (kappa range = 0.39-0.69). The automated method performed better in satisfactory cores (kappa = 0.68) than suboptimal (kappa = 0.51) cores (p-value for comparison = 0.005); and among cores with higher total nuclei counted by the machine (4,000-4,500 cells: kappa = 0.78) than those with lower counts (50-500 cells: kappa = 0.41; p-value = 0.010). Among the 9,059 cases in this study, the correlations between automated Ki67 and clinical and pathological characteristics were found to be in the expected directions. Our findings indicate that automated scoring of Ki67 can be an efficient method to obtain good quality data across large numbers of TMAs from multicentre studies. However, robust algorithm development and rigorous pre- and post-analytical quality control procedures are necessary in order to ensure satisfactory performance
    corecore