2,730 research outputs found

    Data management for earth observations

    Get PDF
    The management of NASA earth observation data is discussed. User requirements are identified, as well as means to facilitate data acquisition. It is shown that LANDSAT data can be preprocessed to condense data into a more accessible format, thus reducing data acquisition costs

    Radiogenic power and geoneutrino luminosity of the Earth and other terrestrial bodies through time

    Full text link
    We report the Earth's rate of radiogenic heat production and (anti)neutrino luminosity from geologically relevant short-lived radionuclides (SLR) and long-lived radionuclides (LLR) using decay constants from the geological community, updated nuclear physics parameters, and calculations of the β\beta spectra. We track the time evolution of the radiogenic power and luminosity of the Earth over the last 4.57 billion years, assuming an absolute abundance for the refractory elements in the silicate Earth and key volatile/refractory element ratios (e.g., Fe/Al, K/U, and Rb/Sr) to set the abundance levels for the moderately volatile elements. The relevant decays for the present-day heat production in the Earth (19.9±3.019.9\pm3.0 TW) are from 40^{40}K, 87^{87}Rb, 147^{147}Sm, 232^{232}Th, 235^{235}U, and 238^{238}U. Given element concentrations in kg-element/kg-rock and density ρ\rho in kg/m3^3, a simplified equation to calculate the present day heat production in a rock is: h[μW m3]=ρ(3.387×103K+0.01139Rb+0.04595Sm+26.18Th+98.29U) h \, [\mu \text{W m}^{-3}] = \rho \left( 3.387 \times 10^{-3}\,\text{K} + 0.01139 \,\text{Rb} + 0.04595\,\text{Sm} + 26.18\,\text{Th} + 98.29\,\text{U} \right) The radiogenic heating rate of Earth-like material at Solar System formation was some 103^3 to 104^4 times greater than present-day values, largely due to decay of 26^{26}Al in the silicate fraction, which was the dominant radiogenic heat source for the first 10\sim10 Ma. Assuming instantaneous Earth formation, the upper bound on radiogenic energy supplied by the most powerful short-lived radionuclide 26^{26}Al (t1/2t_{1/2} = 0.7 Ma) is 5.5  ×  \;\times\;1031^{31} J, which is comparable (within a factor of a few) to the planet's gravitational binding energy.Comment: 28 pages, 6 figures, 5 table

    The Immanent Contingency of Physical Laws in Leibniz’s Dynamics

    Get PDF
    This paper focuses on Leibniz’s conception of modality and its application to the issue of natural laws. The core of Leibniz’s investigation of the modality of natural laws lays in the distinction between necessary, geometrical laws on the one hand, and contingent, physical laws of nature on the other. For Leibniz, the contingency of physical laws entailed the assumption of the existence of an additional form of causality beyond mechanical or efficient ones. While geometrical truths, being necessary, do not require the use of the principle of sufficient reason, physical laws are not strictly determined by geometry and therefore are logically distinct from geometrical laws. As a consequence, the set of laws that regulate the physical laws could have been created otherwise by God. However, in addition to this, the contingency of natural laws does not consist only in the fact that God has chosen them over other possible ones. On the contrary, Leibniz understood the status of natural laws as arising from the action internal to physical substances. Hence the actuality of physical laws results from a causal power that is inherent to substances rather than being the mere consequence of the way God arranged the relations between physical objects. Focusing on three instances of Leibniz’s treatment of contingency in physics, this paper argues that, in order to account for the contingency of physical laws, Leibniz maintained that final causes, in addition to efficient and mechanical ones, must operate in physical processes and operations

    Combined analysis of KamLAND and Borexino neutrino signals from Th and U decays in the Earth's interior

    Get PDF
    The KamLAND and Borexino experiments have detected electron antineutrinos produced in the decay chains of natural thorium and uranium (Th and U geoneutrinos). We analyze the energy spectra of current geoneutrino data in combination with solar and long-baseline reactor neutrino data, with marginalized three-neutrino oscillation parameters. We consider the case with unconstrained Th and U event rates in KamLAND and Borexino, as well as cases with fewer degrees of freedom, as obtained by successively assuming for both experiments a common Th/U ratio, a common scaling of Th+U event rates, and a chondritic Th/U value. In combination, KamLAND and Borexino can reject the null hypothesis (no geoneutrino signal) at 5 sigma. Interesting bounds or indications emerge on the Th+U geoneutrino rates and on the Th/U ratio, in broad agreement with typical Earth model expectations. Conversely, the results disfavor the hypothesis of a georeactor in the Earth's core, if its power exceeds a few TW. The interplay of KamLAND and Borexino geoneutrino data is highlighted.Comment: 12 pages, including 6 figure

    Geo-neutrinos

    Full text link
    We review a new interdisciplinary field between Geology and Physics: the study of the Earth's geo-neutrino flux. We describe competing models for the composition of the Earth, present geological insights into the make up of the continental and oceanic crust, those parts of the Earth that concentrate Th and U, the heat producing elements, and provide details of the regional settings in the continents and oceans where operating and planned detectors are sited. Details are presented for the only two operating detectors that are capable of measuring the Earth's geo-neutrinos flux: Borexino and KamLAND; results achieved to date are presented, along with their impacts on geophysical and geochemical models of the Earth. Finally, future planned experiments are highlighted

    Alien Registration- Mcdonough, Delia F. (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/23769/thumbnail.jp
    corecore