27,408 research outputs found

    Orbifold Reduction Of The Quark-Lepton Symmetric Model

    Full text link
    We investigate the quark-lepton symmetric gauge group in five dimensions, with the gauge symmetry broken by a combination of orbifold compactification of the extra dimension and the Higgs mechanism. The gauge sector of the model is investigated and contrasted with the four dimensional case. We obtain lower bounds on the mass of the exotic gauge bosons, the inverse compactification scale and the exotic leptons. Light neutrinos are obtained without requiring any scale larger than a TeV. However an ultra-violet cut-off of order 101110^{11} GeV is required to suppress proton decay inducing non-renormalizable operators.Comment: References added to match PRD versio

    Parametric study of relaminarization of turbulent boundary layers on nozzle walls

    Get PDF
    By means of comparisons between theoretical predictions and experimental data, the accuracy of a boundary procedure to predict the effect of large streamwise accelerations upon initially turbulent boundary layers is assessed. The boundary layer procedure is based upon simultaneous solution of the boundary layer partial differential equations and the integral turbulence kinetic energy equation. The results of the present investigation show the ability of the procedure to accurately predict properties of boundary layers subjected to large streamwise accelerations. The procedure is used to conduct a parametric study of the effect of free stream turbulence, heat transfer, Reynolds number, acceleration, and Mach number on boundary layers in supersonic nozzles to assist in the design of a quiet tunnel. Results of the investigation show that, even in the presence of moderate free-stream turbulence levels, the boundary layer in the approach section of the quiet tunnel nozzle relaminarizes and becomes thin enough to be removed by a small slot in the nozzle wall. Furthermore, the calculations indicate that it should be possible to maintain a laminar boundary layer for the entire length of the supersonic portion of the quiet tunnel nozzle

    Calculation of two- and three-dimensional transonic cascade flow field using the Navier-Stokes equations

    Get PDF
    A Navier-Stokes analysis employing the time-dependent Linearized Block Implicit scheme (LBI) was applied to two-dimensional and three-dimensional transonic turbulent cascade flows. In general, the geometrical configuration of the turbine blade impacts both the grid construction procedure and the implementation of the numerical algorithm. Since modern turbine blades of interest are characterized by very blunt leading edges, rounded trailing edges and high stacking angles, a robust grid construction procedure is required that can accommodate the severe body shape while resolving regions of large flow gradients. A constructive O-type grid generation technique, suitable for cascades with rounded trailing edges, was developed and used to construct the C3X turbine cascade coordinate grid. Two-dimensional calculations were performed employing the Navier-Stokes procedure for the C3X turbine cascade, and the predicted pressure coefficients and heat transfer rates were compared with the experimental data. Three-dimensional Navier-Stokes calculations were also performed

    Numerical solutions of Navier-Stokes equations for compressible turbulent two/three dimensional flows in terminal shock region of an inlet/diffuser

    Get PDF
    The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data

    Turbofan forced mixer-nozzle internal flowfield. Volume 3: A computer code for 3-D mixing in axisymmetric nozzles

    Get PDF
    A finite difference method is developed for making detailed predictions of three dimensional subsonic turbulent flow in turbofan lobe mixers. The governing equations are solved by a forward-marching solution procedure which corrects an inviscid potential flow solution for viscous and thermal effects, secondary flows, total pressure distortion and losses, internal flow blockage and pressure drop. Test calculations for a turbulent coaxial jet flow verify that the turbulence model performs satisfactorily for this relatively simple flow. Lobe mixer flows are presented for two geometries typical of current mixer design. These calculations included both hot and cold flow conditions, and both matched and mismatched Mach number and total pressure in the fan and turbine streams

    Prediction of laminar and turbulent primary and secondary flows in strongly curved ducts

    Get PDF
    The analysis is based on a primary secondary velocity decomposition in a given coordinate system, and leads to approximate governing equations which correct an a priori inviscid solution for viscous effects, secondary flows, total pressure distortion, heat transfer, and internal flow blockage and losses. Solution of the correction equations is accomplished as an initial value problem in space using an implicit forward marching technique. The overall solution procedure requires significantly less computational effort than Navier-Stokes algorithms. The solution procedure is effective even with the extreme local mesh resolution which is necessary to solve near wall sublayer regions in turbulent flow calculations. Computed solutions for both laminar and turbulent flow compared very favorably with available analytical and experimental results. The overall method appears very promising as an economical procedure for making detailed predictions of viscous primary and secondary flows in highly curved passages

    Binary Capture Rates for Massive Protostars

    Full text link
    The high multiplicity of massive stars in dense, young clusters is established early in their evolution. The mechanism behind this remains unresolved. Recent results suggest that massive protostars may capture companions through disk interactions with much higher efficiency than their solar mass counterparts. However, this conclusion is based on analytic determinations of capture rates and estimates of the robustness of the resulting binaries. We present the results of coupled n-body and SPH simulations of star-disk encounters to further test the idea that disk-captured binaries contribute to the observed multiplicity of massive stars.Comment: 4 pages, 3 figures, accepted to ApJ
    corecore