22,072 research outputs found

    Transverse effects in multifrequency Raman generation

    Get PDF
    The theory of ultrabroadband multifrequency Raman generation is extended, for the first time, to allow for beam-propagation effects in one and two transverse dimensions. We show that a complex transverse structure develops even when diffraction is neglected. In the general case, we examine how the ultrabroadband multifrequency Raman generation process is affected by the intensity, phase quality, and width of the input beams, and by the length of the Raman medium. The evolution of power spectra, intensity profiles, and global characteristics of the multifrequency beams are investigated and explained. In the two-dimensional transverse case, bandwidths comparable to the optical carrier frequency, spanning the whole visible spectrum and beyond, are still achievable

    Variation of solar-selective properties of black chrome with plating time

    Get PDF
    The spectral reflectance properties of a commercially prepared black chrome over dull nickel, both plated on steel, for various plating times of the black chrome were measured. The plating current was 180 amperes per square foot. Values of absorptance integrated over the solar spectrum, and of infrared emittance integrated over black-body radiation at 250 F were obtained. It is shown that plating between one and two minutes produces the optimum combination of highest heat absorbed and lowest heat lost by radiation

    Kaleidoscope laser

    Get PDF
    We report the first calculations of mode patterns of unstable-cavity lasers with truly two-dimensional transverse geometries. A detailed account of numerical techniques, incorporating a nonorthogonal beam-propagation method, and results for cavities with a range of transverse symmetries, such as regular polygonal and rhomboid, are presented. In view of the beautiful complexity of the eigenmodes predicted, a novel kaleidoscope laser is proposed

    Stability analysis of a liquid fuel annular combustion chamber

    Get PDF
    High frequency combustion instability problems in a liquid fuel annular combustion chamber are examined. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation in order to analyze the problem of instability. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations

    Stability analysis of a liquid fuel annular combustion chamber

    Get PDF
    The problems of combustion instability in an annular combustion chamber are investigated. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations. By evaluating these effects, parameters which cause instabilities to occur in the combustion chamber can be ascertained. It is assumed that in the annular combustion chamber, the liquid propellants are injected uniformly across the injector face, the combustion processes are distributed throughout the combustion chamber, and that no time delay occurs in the combustion processes

    The inviscid pressure field on the tip of a semi-infinite wing and its application to the formation of a tip vortex

    Get PDF
    A method was developed for determining the aerodynamic loads on the tip of an infinitely thin, swept, cambered semi-infinite wing at an angle of attack which is operating subsonically in an inviscid medium and is subjected to a sinusoidal gust. Under the assumption of linearized aerodynamics, the loads on the tip are obtained by superposition of the steady aerodynamic results for angle of attack and camber, and the unsteady results for the response to the sinusoidal gust. The near field disturbance pressures in the fluid surrounding the tip are obtained by assuming a dipole representation for the loading on the tip and calculating the pressures accordingly. The near field pressures are used to drive a reduced form of the Navier-Stokes equations which yield the tip vortex formation. The combined viscid-inviscid analysis is applied to determining the pressures and examining the vortex rollup in the vicinity of an unswept, uncambered wing moving steadily at a Mach number of 0.2 at an angle of attack of 0.1 rad. The viscous tip flow calculation shows features expected in the tip flow such as the qualitatively proper development of boundary layers on both the upper and lower airfoil surfaces. In addition, application of the viscous solution leads to the generation of a circular type flow pattern above the airfoil suction surface

    Precise study of asymptotic physics with subradiant ultracold molecules

    Get PDF
    Weakly bound molecules have physical properties without atomic analogues, even as the bond length approaches dissociation. In particular, the internal symmetries of homonuclear diatomic molecules result in formation of two-body superradiant and subradiant excited states. While superradiance has been demonstrated in a variety of systems, subradiance is more elusive due to the inherently weak interaction with the environment. Here we characterize the properties of deeply subradiant molecular states with intrinsic quality factors exceeding 101310^{13} via precise optical spectroscopy with the longest molecule-light coherent interaction times to date. We find that two competing effects limit the lifetimes of the subradiant molecules, with different asymptotic behaviors. The first is radiative decay via weak magnetic-dipole and electric-quadrupole interactions. We prove that its rate increases quadratically with the bond length, confirming quantum mechanical predictions. The second is nonradiative decay through weak gyroscopic predissociation, with a rate proportional to the vibrational mode spacing and sensitive to short-range physics. This work bridges the gap between atomic and molecular metrology based on lattice-clock techniques, yielding new understanding of long-range interatomic interactions and placing ultracold molecules at the forefront of precision measurements.Comment: 12 pages, 6 figure

    High-precision spectroscopy of ultracold molecules in an optical lattice

    Get PDF
    The study of ultracold molecules tightly trapped in an optical lattice can expand the frontier of precision measurement and spectroscopy, and provide a deeper insight into molecular and fundamental physics. Here we create, probe, and image microkelvin 88^{88}Sr2_2 molecules in a lattice, and demonstrate precise measurements of molecular parameters as well as coherent control of molecular quantum states using optical fields. We discuss the sensitivity of the system to dimensional effects, a new bound-to-continuum spectroscopy technique for highly accurate binding energy measurements, and prospects for new physics with this rich experimental system.Comment: 12 pages, 4 figure
    • …
    corecore