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Chapter 1

INTRODUCTION AND LITERATURE REVIEW

During steady operation of a liquid propellant rocket engine the
injected propellants are converted by various physical and chemical
processes into hot burned gases which are subsoquonély accelsrated to
supersonic velocity by passing through a converging-diverging nozzle. The
operation of such an engine, however, is seldom perfectly smooth. Instead
the quantities which describe the conditions inside the combustor (i.e.

pressure, density, temperature, etc.) are time-dependent and oscillatory.

Such oscillations can be of either a destructive or ncadestructive nature.
Nondestructive unsteadiness is characterized by random fluctuations in the
flow properties and includes the phenomena of turbulence and combustion
noise. Unsteady operation of a destructive nature, on the other hand, is
characterized by organized oscillations in which there is a definite
correlation between the fluctuacions at two different locations in the

combustor. Such oscillations have a definite frequency and result in

additional thermal and mechanical loads that the system must withstand.
Unsteady operation of the destructive variety, knovn as combustion , i é

instability, was.first encountered in 1940, At that time a British group i |

testing a small solid-propellant rockgt motor observed sudden increases

of pressure to twice the expected level, enough to destroy a motor of

flight weight. Since tiat time every major rocket development program

has been plagued by combustion instability of some form. These

oscillations in the combustion chamber can have several detrimental effects. N




In sume cases, particularly in solid-propellant rockets, instability

can cause the steady-state pressure to increase to a psint at which the
rocket motor will explode. In liquid-propellant rocket chambers experi-
encing unstable combusticn, heat transfer rates to the walls considerably
exceed the corresponding steady state heat transfer rates, resulting in
burn-out of the walls. If the chamber éln survive these effects, mechanical
vibrations in the rocket system can zause mechanical failurs or destroy the
effectiveness of the delicate control and guidance systems.

The phenomenon of combustion instablility depends heavily upon the
unsteady behavior of the combustion process. The organized oscillaticns of
the gas within the chamber must be coupled with the combustion process in
such a way as to form a feedback loop. In this manner part of the energy
stored in the propellants becomes available to drive large amplitude .
oscillations. An understanding of this coupling between the combustion
process and the wave motion is necessary in order to predict the stability
characteristics of rocket engines.

Combustion instability problems in liguid propellant rocket motors
usually fall in:o one of three categories accordigiutc.thc frequency of
oscillation. Low frequency combustion instability, also known as chugging,
is characterized by frequencies ranging from ten to several hundred
hertz, nearly spatially. uniform proper<ies, and coupling with the feed
system of the rocket. This type of inctability is less detrimental than %
other forms, and the means of preventing it are well understood. Low
frequency instability will not b2 considered. '

A second type of combustion instability, which is less frequently

observed, has a frequency of several hundred cycles per second. This
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type of oscillation is associated with the appearance ofgentropy waves
inside the combustion chamber.

The third and most important form of combustion instability is
known as high frequency or acoustic instability. As the name suggests,
this type of instability represents the case of forced oscillations of the
combustion ehgpbcr gases which are driven by the unsteady combusticr. process
and interact with the resonance properties of the combustor geometry. The .
observed frequencies, which are as high as 10,000 cycles per second, are
very close to those of the natural acoustic modes of a closed-ended
chamber of the same geometry as the cne experiencing unstable combustion.
High frequency combustion instability is by far the most destructive and
is the type to be considered by the followiag analysis.

High frequency combustion instability can resemble any*ofxthc )
following acoustic modes: (1) longitudinal, (2) transverse, and (3)
combined longitudinal-transverse modes. Longitudinal oscillations are
usually observed in chambers whose length to diameter ratio is much greater
than one; in this case the velocity fluctuations are parallel to the axis
of the chamber and the disturbances depend only oﬁ.énd'ipaco dimension.
For much shorter chambers the transverse mode of instability is most
frequently obs;rvcd. Transverse oscillations in rocket motors are
characterized by a component of the velocity-perturbation which is
perpendicular to the axis of the chamber but the disturbances can depend
upon three space dimensions. Such oscillations can take either of two
forms: (1) the standing form in which the nodal surfaces are stationary )
and (2) the spinning form in which the nodal surfaces rotate in either the
clockwisz or counterclockwise direction. Transverss combustion insta-

bility, particularly that resembling the first tangential mode, has beeu

A ———
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o frequently encountered in modern rocket development programs and has been

the subject of much current research.

Historic Studies in the Problems of Combustion Instability

Since the early 1950's much experimental and analytical research

has been devoted to better understanding the phenomenon of high frequency

combustion instability. Most of the theories presented prior to 1966 were ..

i

restricted to circumstances in which the amplitudes of the pressure

oscillations were infinitesimally small in the linear regime. Prominent
among these are the pioneering studies of longitudinal instability by
Crocco [1] as well as the studies of tfansverse instability by Scala [2],
Reardon [3], and Culick [4]. A complete discussion of these theories is
given in the work of Zinn [5] and will not be repeated here. I
Although linear theorieg provide the propulsion engineer with
censiderable insight into the problem, their applicability and usefulness
in design is limited. The linear theories cannot provide answers to such
important problems as the limiting value of the pressure amplitude

attained by a small disturbance in the case of a liﬁéériﬁ unstable engine,

or the effect of a finite~amplitude disturbance upon the behavier of a
linearly stable engine. In the latter case the result of many tests
indicate that undér certain conditions the introduction of sufficiently

large disturbances into a linearly stable engine can trigger combustion

instability. Another shortcoming of linear theories is the fact that

Nl g, R L st

their predictions cannot be compcred directly with available experimental . . %
data; for, in the majority of cases, the experimental data is obtained
E 5 under conditions in which the .ombustion instability is fully developed

and in a non-linear regime. Therefore, theories accounting for these

i
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nonlinearities associated with combustion instability are needed. A
more detailed discussion of the nonlinear aspects ;f combustion instability
can be found in a work by Zinn [S]. - -

In the field of finite amplitude (nonlinear) combusticn instability,
mathematical difficulities have precluded any exact solutions, and
approximate methods and numerical analysis have been used almost exclusively.
For this reason publications in this field are scarce. Notable among thegg
is the work of Maslen and Moore [6] who studied the behavior of finite
amplitude transverse waves in a circular cylinder. Their major conclusion
was that, unlike longitudinal oscillations, transverse waves do not steepen
to form shock waves. Maslen and Moore, however, considered only fluid
@echanical effects; they did not consider the influences of the combustion
process, the steady state flow, and the nozzle which are so important in
the analysis of combustion instability problems. Nevertheless, pressure
recordings taken from engines experiencing transverse instability reveal
the presence of continuous pressure waves similar in form to those
predicted by Maslen and Moore.

One of the first nonlinear analyses to include -the effects of
the combustion process and the resulting steady state flow was performed
by Priem ana Guentert [7]. In this investigation, the problem was made
one-dimensional by conﬁidering the behavior of tangential waves traveling
in a narrow annular combustor of a liquid propellant rocket motor. They
used a computer to solve numerically the resulting nonlinear equations for
various values of the parameters involved. Due to the many assumptions
involved in the derivation of the one-dimensional equations, the results

of this investigation are open to question.




X 6
The successful use of the time-lag concept (see Crocco [1]) in the
~ linear theories prompted a number of researchers to apply this model to
the analysis of non-linear combustion instability. By considering a
chamber with a concentrated combustion zone and a short nozzle, Sirignano
[8] demonstrated the existance of continuous, finite-amplitude, longitudinal
periodic waves. These solutions were shown to be unstable, however, thus
indicating the possibility of triggering longitudinal oscillations.
Mitchell [9] extended the work of Sirignano to include the possibility of
discontinuous solutions. In this manner he was able to show that the final
form of triggered longitudinal instability consisted of shock waves moving
back and forth along the combustion chamber. Mitchell also considered the
more realistic case of distributed combustion.

In the analyses of Priem, Sirignano, and Mitchell the oscillations
were dependent on only one space dimension. One of the first researchers
to study finite-amplitude three-dimensional combustion oscillations was
Zinn [5] whose work is an extension of the linear transverse theories and
the analysis of Maslen and Moore. Using Crocco's time lag model Zinn
investigated the nonlinear behavior of transverse waves in a chamber with
a concentrated combustion zone at the injector end and an arbitrary
converging-divérging nozzle at the other end. In this case, it was
necessary to extend ercafs burning rate expression and transverse nozzle
admittance relation to obtain the appropriate boundary conditions for the
case when the flow oscillations are of finite size. As a result of this
analysis Zinn was able to prove the existance of three dimensional‘
finite-amplitude continuous waves which are periodic in time. In
addition, he was able to prove the possibility of triggering combustion

oscillations. An analytical criterion for the determination of the

s
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stability of such waves was derived, but because of its complicated form
and the limited capacity of available computers no specific numerical
results were obtained. B

In more recent years other investigators such as Burstein [10]
have attempted to solve numerically the equations describing instabilities
that depend on two space dimensions. Aithough the resulting solutions
resemble experimentally observed combustion instability, this method -
requires excessive computer time, and studies of this type for three-
dimensional osciliations will have to await the development of a much
faster breed of computers.

In a recent publication by Powell [11], the problem of analytically .

and numerically analyzing multidimensional non-linear combustion instability

was investigated. The problem in doing this is that a system of non-
linear coupled partial differential equations whose solutions must

satisfy a complicated set of boundary conditions governs the phenomena of
combustion instability. These boundary conditions may describe the
unsteady burning process of the wall of a solid propellant rocket motor;
the conditions at an idealized concentrated combugéibﬂ‘ione of a liquid-
propellant rocket engine; or the unsteady flow of the entrance of a
converging-div;rging nozzle. Previously, in an effort to obtain analytical
solutions to various combustion instability problems, investigators have
been forced to simplify the original problem to such an extent that it no
longer resembled the real problem that originally was to be solved. Powell
proposed a method to perform a nonlinear stability analysis with relative
ease. This method, applicable to both linear and non linear problems with
complicated boundary conditions, was a modified form of the classical

Galerkin method. The Galerkin method [11] is an approximate mathematical

P Y S
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= technique which has been succéssfully employed in the solution of various

engineering problems in the field of acoustics. Powell used this method i
to specifically study the non-linear behavior of combustion driven

oscillations in eylindrical combustion chambers in which the liquid

propellants are injected uniformly across the injector face and the

combustion process is distributed throughout the combustion chamber. Based
upon the results of his second and third order theories, the following
nonlinear mechanisms were found to be important in determining the non- i
linear stability characteristics of the system: (1) the transfer of energy
between modes, (2) the self-coupling of a mode with itself, and (3) a non-
linear combustion mass source. Powell found that the self-coupling
mechanism was important in the initiation of triggered instability, while
the non-linear driving mechanism was important in the determiﬁétion.of-the

final amplitude of triggered instability.

Statement of the Problem

In this thesis, the problem of velocity-sensitive instability will
be considered. Based upon previous work on this p?ébléﬁ, only transverse
oscillations will be considered due to mathematical simplicities. Also,
the specific géometry of the combustion chamber to be analyzed will be
annular or ring-like. The purpose of this thesis is to investigate the
mechanisms which cause these instabilities due to the combustion process
in a liquid propellant annular combustion chamber and attempt to state
which mechanisms or conditions impose the greatest effect upon stability .
of combustion.

In Chapter 2 of this thesis, the governing equations of fluid

motion (i.e., balance of miuss and momentum) are stated. From the equatioms,




the general acoustic wave equation for non-linear combustion is derived.
In this derivation, both steady state and deviations from the steady-state
conditions are considered and their effects incorporated into the general
acoustic wave equation.

In Chapter 3, the Galerkin method is used to obtain, from the
general acoustic equation of Chapter 2,.equations governing the modal -
amplitudes associated with the first two modes of transverse oscillation _
in a thin annular combustion chamber. These equations for the annular
combustion chamber are solved numerically by the use of a Runge-Kutta
program for various conditions.

In Chapter 4, a set of approximate equations are derived from the
modal amplitude equations presented in Chapter 3 by use of the two-variable
éerturbation technique. These resulting approximate equatioﬂs éfe )
expressed both in the modal amplitude and amplitude-phase angle form. In
this chapter, four special cases are presented for which closed-form
solutions can be found. These four cases are (1) standing wave--no
combustion, (2) standing wave--no gas dynamic nonlinearities, (3)
traveling wave--no combustion, and (4) traveling wave--no gas dynamic
nonlinearities. For problems not falling within the above cateéories,

a numerical aAalysis is employed to solve approximate equations.

In Chapter 5, the results contained in the previous two chapters
are discussed and compared. Stability limits are obtained and the effect
of neglecting various physical effects are discussed. In addition, the
accuracy of the perturbation method is evaluated. A summary of the .
research contained in this thesis is presented in this chapter.

In Chapter 6, a statement of conclusions is made along with

recommendations for future research in this area.




Chapter 2
% DERIVATION OF THE GOVERNING ACOUSTIC WAVE EQUATION

In order to investigate the non-linear combustion instabilitles

that occur in liquid propellant rocket engines, one must start with the

equation was formulated relating pressure and density. Mathematically,

these principles are respectively

% %
*® %
F+V . ()= (2.1)
bl A % #
*
p(%‘;-“ﬁ-ﬂ):-% (2.2)
] 1o %
; p= a? o, (2.3)
where
* L3
p - gas density
%
t - time
% ’
v £ th 1 .
V - del operator of the system 3;7 + 3;7 j * T
%
u - velocity of the gas
* »
B - fuel drop burning rate per unit volume

%t
p - pressure of the gas
%
a

2. constant of proportionality (in this case - speed of

sound).
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balance laws of mass and momentum. Also, for this problem, a constitutive
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The * representation denotes that the above physical quantities are
dimensional. Equations (2.1) - (2.3) are based on the assumption that
the fuel drops serve only as a source of mass for the'iag phase.
Interphase transfer of momentum and energy are neglected.

Combining equations (2.2) and (2.3), the resulting equation is

* ] *® & ]
[ * ®
p(%u-;+:'$.\:)=- 239. (2.4)

inlet

gas-1liquid drop
mixture

exhaust

combustion chamber

variable area cross section

.
]

fuel drops enter here
through injector plates

Figure 1. Schematic of a Liquid Propellant Combustion Chamber .

N SR SO,

s L. (e
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A convenient non-dimensionalization of the variables is as follows:
A A # .
P =pp (po - initial density of gas)
: ® »
us=au
: 1
3«'—-‘;—?
L
#
th = éa-t
#Q #
f =
p* = a® o p )
'Y
a P2
B=? Bo

Substituting these non-dimensional relations into equations (2.1), (2.3),

and (2.4), the results are

0 . e
=+ V. (o0) = B (2.5)
>

pg—‘;+p3-3§=-3p (2.6)
P=0po (2.7)

where the unstarred quantities are dimensionless.

ke

C

™




R L

iobiuis il LU

Ui

13
Dividing through by density p, equation (2.6) becomes
. .
4:—;-‘-4-'\:-33:-;&. (2.8)
Since,
z—p-=$‘b!p,
the governing equations can be summarized as
2+7. (ol) =3 (2.9)
-+ - '
BT . Fi=-Ttmo (2.10)
pP=o. (2.11)

It will now be shown that to the order of approximation inherent
in these equations, the flow is irrotational, that.is $.xu=0. Todo
this, take the curl of equation (2.10) and set it equal to zero. The

resulting equation becomes

»
*

3x(§-‘%+3.33)=-3x$£ﬂp=0. (2.12)

Since the curl of any gradient is zero. This may be rewritten as

vxg_g+vx<s-va>=o. (2.13)

.




I
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The vorticity § is defined to be

8=29xu. : (2.1u4)
Thus,
-> ’ .
vxg%-%mm-g.f-. (2.15)

From the vector identity

- FR:2%04) -Xx (Fx D)

it follows that
3.0 =002 -0 x 8. (2.16)
Therefore,

Tx@-TD =7 x¥0oad - %8, (2.17)

Recognizing that the curl of any gradient is zero, equation (2.17)

reduces to
Tx@ - TH=-Tx@x. (2.18)

Using the vector identity

Ix@AxDH =B - V-3F . DH-@.HMB+xF- B

-
R
oo

it o il

PR S
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equation (2.18) can be expressed as

Tx@ - TD=-@-HI-AF . DH-@ - HF

+3 @ B, (2.19)
Therefore, esquation (2.13) becomes
:_2_ @ TREF D@ E-3F B0, (2,20

Equation (2.20) can now ve modified by using the definition for the total

(comoving) derivative which is

bR _ W |, +
R +e - (T,

Substituting this expression into equation (2.20) and simplifying, the

resulting equation becomes

Y

s FDH-@H. T+ F D, (2.21)

(=]

t

Rewriting u (¥ -.3) as U [V + (¥ x W] which is zero since the divergence

*

of the curl of any vector is zero, equation (2.21) becomes

%g.a.m)-m)-a. (2.22)

The implications of this equation for a fluid starting from rest are as

follows. At the initial instant of time (t = 0), the vorticity of any
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£fluid particle will be zero. Thus, the tims derivative of the vorticity

of the particle will be zero, implying that %g- r0atte«0, Since

R =20and % = 0atts0, it follows that & = 0 at the next instant of

time. By induction, it can be shown that R = 0 for all time unless the

velocity gradient becomes infinite for any t = 0. It is assumed in what

follows that this does not occur and tht‘ flow is treated as irrotational.
Since irrotationality has been proven, the velocity vectror Uecan -

be expressed as

v Ty (2.23)

where | is the velocity potential. Substituting equation (2.23) into the :

left hand side of equation (2.10), the result is

3%+'6-3G=%‘t1+3(3§2)-3x3
s%?ﬁ ) +3[&(V w)"’J -Fuxid. (2,24)

For irrotational flow (8= 0), the right hand side of equation (2.24)

becomes

T2+ (i - wa . (2.25)

Therefore, equation (2.10) can be written as

'v'[%?t-’w KTy - Fy) + £ % =0, (2.26)
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Spatially integrating equation (2.26) produces
;%4'3530 « T+ np=alt) ' (2.27)
where a(t) is a function of integration. From equation (2.23), it can
be seen that an arbitrary function of time can be added to ¥ without '
affecting the result for U Thus, a(t) could be absorbed into ¥. The
same thing is accomplished by settinga = 0 which results in
3 14
thos-gt -y (2.28)
or
L 3
-(-g%n,% . W)
pte . (2.29)

Thus, p and U are both known as functions of ¥. From equation (2.9), the

governing equation for ¢ can be written symbolically as

‘2‘% s o8y e By . Foen (2.30.a)

-GE§+ i 3¢ . Vg
pEpEe . (2.30.D)

-4
Rather than combining these quantities immediately, it is convenlent to .

first make further simplifications based on the nature of the physical

problem that it {s desired to analyze.

3
3
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Steady State Solution

First, the steady state solution of equations (2.30) correspending
to purely axial motion will be found. Define the steady-state velocity

potential ¢ by

v = ed(z2) ' (2.31)
where ¢ (assumed small) is the measure of the deviation of the density
from its initial value (see equation 2.32 below), The bar notation will

represent steady-state conditions. The steady-state burning rate w is

defined from

B = (:)(Z). . - (2_.32)

While many other situations are possible, attention will be confined in

the present work to the case when w = 0(e). To indicate this let

(o = 0(1)). (2.33)

El

]
™
Q

Thus, the burning rate B can be expressed as

B = e0. (2.34)

bt}
p=e dz . (2.3%9)

Using the Taylor series expansion for the exponential function and

retaining only the first two terms, equation (2.35) becomes




TR TRTTRIEREIA= e T e

R R
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. 2292
p-i—%ﬁ@% L ZEP T - (2.36)

Substituting equations (2.31), (2.34), and (2.386) intg'equatioﬁ (2.30.a)

" and dividing the result by ¢ ylelds

[1- s 52(%2)2* e Zl[%g'}* %i' [“2 (‘3‘2’) (%Z%-)] =9 (5.37)
or

%’g-- % 52(%\ (3—:’-;6—)+ ... =0 (2.38)
ﬁetaining only terms of 0(1) produces - - e

as -

&t -s. (2.39)

For simplicity, only the case of uniformly distributed combustion (i.e.

o0 = constant) will be considered. Thus, integrating equation (2.39) one

obtains

g;=57‘*°1 . (2.40)
where %g = u is the steady state velocity of the gas.

At the injector (Z = 0), u = 0. Thus, C, = 0 and

E:%%=5 z. (2.41)




'It is assumed that w
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Deviations from St.ady State
It is now desired to investigate the stability of the steady
state solution discussed above. Toward this end, an“édditicn#i
velocity potential related to perturbations from the steady state is
defined by the equation
v=eld+ox, y, 2, 1)) . (2.42)
A perturbation burning rate B is also defined by the equation
B=uw+ e (2.43)

0(e) and this is indicated by defining a function

o such that o = 0(1) and w = oe. Then equation (2.43) becomes

w
"

Taking the gradient of

->
Vg =

or

Ry =

e(o + €0) ., (2.u4)
equation (2.42), one obtains

elV e+ Vol (2.45)

efu ;z + V43, (2.46)

From equation (2.42), the time derivative of y can be expressed as

kil
ot

e 3¢
at . (2.47)

T

L T 1
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Substituting the equations (2.46) and (2.47) into equation (2.30.b)

and simplifying, one obtains

T IR S VRS
e t= + Me“(u + 2uz=+9V ¢ ¢$)
p=p=e [31: 9z ]- (2.u8)

Expanding (2.48) in a Taylor series and neglecting terms of 0(5:3) and

higher produces the expression

_ _ 2
p=p=1-e-:%+ez[-¥(u2+$¢'v¢)‘ug—:;‘"‘;5(% ]. (2.49)

Substituting equations (2.42), (2.u4), and (2.48) into equation (2.30.a) ;

“and dividing the result by € leads to .-

2 - - a2 2
—g—t%+e [—%a—g(uzi-ﬂ -3¢) —u—gzgti-!s%—t—(g—:)]

-+
nJ|e

3t
+ %(—g—%)z]} '(g—g + V%) + (ue + ¥6) .....(_ e -3—:2-

+ 523(-45(62 + Vo 3¢)\)- u -g% +% (ﬂ)z] =0+ e0, (2.50)

4

.. .+ ‘:1-533;+52[-;5(52+3¢.'6¢)-ﬁ

Neglecting all terms of 0(e?) and higher and recalling from the steady-

state solution that u = d¢ . 0z and du o yields
dz dz

e e N G
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32 2 3¢ d
A -V¢+e[3: Vs - V¢)+u -3-:-3—3' “%32\‘ |
- = 32
+ %% g+ u %z%%-*‘ (% . v%%)] = =0€. (2.51)
Substituting

. .59
a (V¢ vé) = Vo 3“

(2.52)
into equation (2.51), results in
2 2 '

%9 _ o2 ) >9%% 39 3 ;
3 V¢+e[2($¢ vat)*z“azat‘”at"
|

MUY (TP ) | S (2.53)

at ate )

where only terms of 0(1) and 0(e) have been retained. Equation (2.53) can
32
be further simplified by observing that V2¢ = atg + 0(e).

Thus, the last term of equation (2.53) can be wrltten

3 [o, 3%\ _ _ 3¢ [3%¢ )
sﬁ(ﬁlcb--a-g-)-eat(atz-ro(ﬂ at2)-0(5).

I

Since the other terms of 0(e2) have already been neglected, consistency

requires that this term be deleted and the equation be rewritten as

326 _ o2 By - 538\, a5 2% L3 5.
2 'V"*EE’(V" vﬁ)"z“ 3zt T3t 0 )T 9% (2.54)




A

161

gl

23
In this thesis, attention will be confined to transverse instability.
For this aituation
¢ = ¢(x, y, t). ‘ (2.55)
Therefore, equation (2.54) becomes
32 2 3 3¢ T o
3;% V ¢ + 8[2(V¢ hd ﬁ'ﬁ) + -‘a? [+ = - gc. (2.56)
To account approximately for frequency changes due to baffles, nozzle
shapes, etc., a correction term of the form
i
-+ ’ 2
: 2(3%% .
¢ XV (3%2) (2.57)

was introduced into equation (2.56). This form, one of many possible, was
chosen so that the linearized form of equation (2.56) would reduce to Love's

equation for a one-dimensional problem. This linearized form of (2.56) is

324 azg e

362 "z - ¢ Pz 7 O (2.58)
Thus, it can be seen that the value Kwill affect the acoustic frequencies.
Physically, this is the purpose of baffles, nozzle shapes, and other

physical parts of the combustion chamber. Therefore, inserting the

correction term into equation (2.56), the resulting equation becomes

at

32 g2 5 3% L300y g2f228)]. .
7 - V20 rc|agk eV - Vg xV3o %€ (2.59) .
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where K is the correction factor. This non-linear wave equation will be
the basis for numerically and analytically investigating the transverse
combustion stability problems occurring in liquid propéllant rocket

engines.

i
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Chapter 3

DERIVATION OF WAVE EQUATIONS BASED UPON AN
ANNULAR COMBUSTION CHAMBER

In Chapter 2, there were no restrictions concerning the geometry ..
of the combustion chamber in the derivation of the acoustic wave
equation. In this chapter, however, a set of equations will be developed
based upon a narrow annular combustion chamber. A typical cross-section
for such a combustion chamber is shown in Figure 2 below in dimensional

and dimensionless form.

(& (AR
NP

(a) Dimensiopal (b) Dimensionless

PO,

UR

Figure 2.- Dimensional and Dimensionless Form of a Circular
Cylindrical Combustion Chamber

In Figure 2 (a), the dimensional quaﬁtities are
%
r - radius of a typical point in the combustion chamber
%
R - inside radius of the combustion chamber
%
b

- thickness of combustion chamber's cross-section.

25
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In Figure 2 (b), the dimensionless quantities are -

SR—

r - non-dimensional radius of a typical point

o The first major assumption to be made in the geometry of the combustion
chamber is : i

-R—<< 1l (3.1)

which states that the circular dylinder can be thought of as a thin
(ring-like) annulus.

Define the characteristic length Lt by
L* = R%, (3.2)

In restricting the analysis to an annulus, a transformation to polar
coordinates is convenient. Recall that the gradient and Laplacian

operators in polar coordinates are

z_2 L
V= er P +

UB%

-
A

(3.3)

.

32 32
362 ' 322 °

3+

2
220 123
v ar2 * r or +

The second major assumption for the simplification of the velocity

potential is restricting ot
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¢ = 48, t)
(3.4)

r i1 ,

Therefore, using the cperators of equations (3.3) on the function of

equation (3.4), the results are

% 30
(3.5)

V29 = %3%

*

Substituting the results of equation (2.5) into the general acoustic wave

equation (2.58), the modified wave equation becomes

2 2 2 4
3¢ 2t . [a 30,8 38 _ (3¢ ] z - gc.

3t " 962 3t 36 o289t t2982 (3.8)
Now, express the velocity vector
-
; q 4+ K' (3.7)

4
->

where u - steady-state velocity vector

u'- perturbation velécity vector.
From the steady state solution in Chapter 2, the velocity vector was

defined as

-2 dé +
ur ‘[Ei%]. (3.8)

Bt
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Define the perturbation velocity vector by
-t 9 =+ -
U edesegt 3 (3.9)
Substituting equation (3.8) and (3.9) into equation (3.7) and using
equation (2.23) results in
3-:‘3’%324-::—} o = . (3.10)

To determine only the transverse velocity component of the perturbation
velocity vector, subtract the perturbed velocity component along the
axial (z) direction of the chamber from the total perturbation velocity

vector. Thus,

u =T uyu =-ue. (3.11)

In this case, since u = u(8, t) only, there i{s no perturbed velocity

component in the axial direction; therefore,

' -3_1"
t " ¢ 36 %. (3.12)

n“

It is now desired to find the burning }ate ¢ in terms of the parameters

in the wave equation. To obtain this expression, assume velocity sensitive
combustion with no history effects. Mathematically, the burning-rate
function for velocity-sensitive combustion will be exprcssed by the purely

phenomenological equation




where n is called the interaction index.

29

(3.13,

Using the derived results for the general time-delay integral

(discussed in Appendix A), the burning rate with history effects

accounted for by a simple time delay is

czwn f(gééf)- ftcgf;i)

where the subscript T represents the time delay.

will be assumed that
2 12
f(“t' )3 Ye
2 €2 .
Then, the burning rate can be expressed as
-[{38}2 3¢\ 2
o= nu[(-a-%) - 5(3_9 J

where § = 0 - no time delay

1 - tim delay .

(3.14)

For simplicity, it

(3.16)

Therefore, substituting equation (3.16) into equation (3.6), equation

(3.6) can be rewritten

h_‘
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32 FY - 3 2 L
PRt ot ealt - cihe

(R (%g-}i)] . 0. (3.17)

There is no closed form solution of equation (3.17)'thnt appears likely.

The main purpose of the present work is to determine the modifications of

~solutions of the usual acoustic wave equations that are caused by the

presense of the nonlinear terms multiplied by ¢ in equation (3.17).
Thus, rather than attempt a finite di’ . erence numerical solution of
equation (3,17), the following procedure was adopted.

The solution is represented by the Fourier serfes

$(8, t) = fl(t) cos 8 + fz(t) cos 20 + xi(t) sin 9

* g(t) sin 20 + . .. ' (3.18)

and initial conditions are chosen such that in the absence of the nonlinear
terms, the exact solution can be formed using only the filrst two terms of
the Fourier series. Because of the quadratic nature of the non-linear{ties,
the se~ond two terms 1; equition (3.18) répresent a complete firat order
correction to the acoustic solution due to non-linear gas-dynamic and
combustion effects. Only the first four terms in equation (3.18) are,
therefore, retained and the approximate sclution determined by this method

is the simplest one capable of {llustrating the influence of the nonlinear
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terms. The approximation can, of course, be improved by retaining

additional terms in equation (3.18) but this is not investigated.
Subatitut_ing equation (3.13) into equation (3.17) and using

the multiple angle formulas t» simplify terms containing products of

trignomet?ic functions, one obtains 4

e )
T thteRw "“{f?dt R R OF A

d?f

+ Ke a?;‘- + 2new [flf? + ‘1‘2] - 2jene [fltfh + 311‘23

31

208 &

42g . SEL df dg ifz dg’]
Tt ? 2‘{‘2 LT el M ol PY

+ Ke I'tTL + 2 “‘“[flgz - f251] - 2jewn [f“gh - 52-:81;} sin ©

e S )
HRT tvhteg ”gidt -t 3ot e g

NGt tegrc g qr thaar|tie T

- ms{figi] + jwnc[fhgh] sin 20+ . . . ® 0.

(3.19)
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Equation (3.19) is a summation of terms composed of some function of
time t and a term containing O variation Since the equation must be
valid for all values of ©, each of the time depAenden-‘c' coefﬁéients
of the 6-terms must individually be equal to zero. Therefore, four
ordinary differential equations governing the time-dependent modal

amplitudes f f2 and g, emmerge from this analysis as the governing

1’ gl’

equations to be used for analysis of instability in an annular combustion

chamber. Ti: .e equaticns are

a2f _ df, df, dg, dgz]
o thtegrEf. gt 8 a AT,
d2f _ _
+ Ke d_tTL + 2new [‘flf2 + 3122] - 2jenw [fhf,ZT + ghgh] =0
(3.20.a)
Ce, - %, o % & &
Gt tegt G Tt R s w ThTn
d%g - -
+ Ka. Tzt 2new [f1g2 - f2g1] - 2jewn [fh_gz_r --thgh] =0
: (3.20.1)
d2f df dg af d%f

-2 ol a1l vk a2
L PR e |-Fl raud Pl L T

- 2 _ g 2|_ e 2 _ g2 =
+ %eun [gl fi] %jewn [gh, flr] 0 (3.20.¢)
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- wne {flgi] + jnwe [fhgh] =0,

33

(3.20.4)

In the following work only instantaneous combustion will be considered.

Thus, the appropriate equations are equations (3.20) with j = 0. These

equations are recapitulated below.

azs af df df dg dg

-1 -1 -2 -1 -2
ot tegrrelf, Tt E Rt Tt w

a2f

—l o =
+ Ke Iz + 2new [f1f2 + 3132] 0

dg af dg df dg

dzg
=1 -1 2 .. 2. —1
Tt tegmtEL T thw s " h

d%g
+ Ke 3¥TL + 2new [f132 - f231] =0

4

ottt rele [t i E

a%f
+ LKe a?z'z + ;iE(:m [g12 - fiz] =0

(3.21.a)

(3.21.b)

(3.21.¢)

i
1
2
E
i
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dzg
+ UKe d_trz - wne %11’1] =0 (3.21.4)

The equations of (3.21) were solved numerically by the use of the -
quartic (fourth-order) Runge-Kutta mefhod. To use this method, the

equations of (3.21) are modified by defining the quantities

af
—
dt

"
']

daf
dt 2

)

dt =~ 2. (3.22)

Substituting the$e expressions into equations (3.20) and solving these

equations for the highest derivative (in this case - second order), we get

da

-a—t.)- = [—f1 - w(al) - 2ei(f2(al) + fl(az) + g2(b1)

+ gi(bg)) - 2nea(f1f2 + glgzi] /(1 + Ke)




a-“:..L = {-g1 - B(bl) - 255.(82(31) + fl(bz) = 31(52)

- f2(b1)) - 2ns§x(f1g2 - ngi)]/(l + ¥Ke)

3
i
{

- da
— = [.ufz - :‘(32) - ei(gl(bi) - fi(al))
~kewn [g12 - fli} /(1 + 4Ke)

db
'51_:1 = [.qg2 - m(bz) + ei(gi(ai) + fi(bi))

+ wne (f1g1)] /{1 + 4¥e) ' (3.23)

where i is the gas-dynamic index.

By the development of a computer program incorporating the Runge-
Kutta algorithm which can solve systems of first-order ordinary differen-
tial equations, the eight equations (3.22) and (3.23) were numerically
solved for the eight variables a5, a,, bl’ b2, fl’ f2, g4> and gp-
Different cases involving varying the gas-dynamic index, interaction
index, the correction variable (K), and the order term (epsilon) will be

discussed and compared with the perturbation method of solution in a

later chapter. In Appendix B, a sample program listing this calculation

appeares.

R L SR (| Lo R




Chapter 4

TWO-VARIABLE PERTURBATION METHOD APTLIED TO THE

ACOUSTIC WAVE EQUATIONS

%

In this chapter, a set of approximate equations will be developed

from the governing equations for the modal amplitudes (3.21), by the use

of the two-variable perturbation method. The two-variable method is well

suited to this type problem since one expects the solution to consist of

sinusoidal functions with slcwly varying amplitude. Applying this method,

define two variables representing time

n=ct (4.1)

Therefore, the four modal amplitudes would now be

£ = £ (5,0

Hh
[}

= f2(£’“)

g2 = gz(gsn) » (""02)

By applying the chain rule of differentiation, it can be shown that

(¥

2.232, X (4.3)

t 13 an

[a¥

and

o

36
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%2, 3%, 5. 2% , 2 2%
a2 a2 2600 an? | (4o4)

where 2 = fl’ f2. 811 & respectively for each of the above equations.
By substituting equations (4.3) and (4.4) for each modal amplitude into
equations (3.21) and keeping terms only of 0(1) and 0(¢), the resulting

equations become

2 2
9 fl 94t afl afl 3f2 38y

1 -
3—5-2—1' fl+e[2 3&3n+°-3—€_+2f23.5—+ 2fl 3% +2g2 3¢

3, 32f

3%g, azgl 8, af, 38, of
+ Ll 5L4+og —L4of —2. 05 2
22 TE telgmnt o Y% 3 TR T

28, 3%g, _
2 E + K -8-5— + 2nw(flg2 - f2gl)] =

]
o

- 2f

32f sf oL af
2 2 98 1 1

+ -F
e M tel2 g togr t e 3 13¢

a2%f
+ uK 3—522 + % Fn(glz-le)] =0

32g 34g g of g

2 2 - 982 1 1
2 - e F . —

2tz T g, * el 2E3n Yo g1 3 1 3¢

3%g, _
+ uksgzi - Gh(f,8)1 =0 . (4.5)
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From the straight-forward perturbation method, define the modal amplitudes
by the series expansions | .
;
.

g
]

L = FiolEsn) e £, (E,m) + ’ o

2
)

g = fzo(e.n) +e fél(e.n) +

»
L
-

gl = Zlo(Em) + e Sll(ﬁs'n) +

(4.6)

. 82 = 320(5171) +e 321(€|ﬂ) +

Again by applying the rules of differentiation, it can be shown that

LI S
3 te

o
r
e

327 32T e 92K
352 aET aEZ

327 32T 32K
= 4, ;
3tan - 3Ean T € 3Ean . (4.7) 1

™
)

where = fl, f2, g0 &

T = £100 900 8100 820

and K= fll’ le, 8110 891» respectively.

Substituting the expressions of (4,6) and (4.7) into equations (u4.5) and

keeping terms only of 0(l) and 0(¢), the resulting equations become
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2% 2%f 22 Y3 Y.
10 11 10 , = 10 10
R f0t e[ + fn + 2 ot o Tt 2, T
of g g 22f
20 10 2839 10
Pt Baosr t Rt K
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g of g 3%g
v2f, =B g 20 g 210, 10
10 3¢ 10 3 20 3 3¢
+ 2nw(fl°g2o - f2oglo)] =0
a2f 32f a2f af
20 10 20 20
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g of 3%f
10 %10 20 2y7 <
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By separating the terms of 0(1) and 0(c) in the equations of (4,8) and

equating both sets of terms equal to zero, the resulting equations become
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V,e a0
ag! - 210
22f
20
T +“f20 0
328,
Tty " O (4.9.a)
2 2
e a0 ¥ L, Fo . ¥a
g2 11 "“3Een - % a 205¢ 10%3¢
g Y4 32f
10 20 10
oot 2810 357 - K 3T - Mulfyofan + 81082)
2 2
agll-pg :-23810-"“10-23 2&.0.-2 ig_’?’.o.
3E2 11 atan % 3t 20 3¢ 10 3¢
of 38 2%
20 10 10
Y2810 35 * Hao3r " KT - Bl o8y, - £y0810)
2 2 2
ol up s -3 o By o B
3g2 21 agan % 3¢ £10 3¢ 10 3¢
32f
- 20 - 1= 2 _ 2
uK 5 '5‘““(310 £,0%)
2 2
8, g« g b0 - ¥
g2 21 3Ean  ©° oE 10 3¢
38 22g
10 20 . -
+ £, T uK 3e2 + ““’(floglo) . (4.9.b)
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Therefore, it can be shown that assuming the appropriate form of a solu-

41
The equations of (4,9.a) are linear second-order differsntial equations, )
tion, the results become ;

§

flo s Al(n) cosvs + Bl(n) sin ¢

= Az(n) cos E + Bz(n) sin £

ST
£n0 = Ay(n) cos 2¢ + B,(n) sin 2§
859 = Ay(n) cos 2¢ + B (n) sin 2¢, (4.10)

Substituting (u4.10) into (4.9.b) and using the multiple-angle formulas

yields
22¢ "dA
1L, e ol S1_ 1,5,1
o £, & 5 Ao+ §<A1A3 + 8183)
1l
-(3183 + AlAs) + §{A2Au + stu) - (AzAu + szu)

1. -1 1
- -*24\31 + nw[a(AlBs - AaBl) + §(A2Bu - B:ZAM)]] sin §

)

-2'&4»238 + XA.B, - AB,) + (A.B, - AB
2 2 183 183 - A8

1 1
+ 3 (AL‘B2 - AzBu) + (A2Bu - BzAu) - -é-KA

1

-1 1
+nolZ(A\Ay + BBJ) + 5 (A, + 3234)]] COS E+ .+ .+ &




a
2 1= 1
= té " "2[‘?1?'?“2 + 3(AA, + BiB)

~(AA, +B,B,) + (AAg +BB) - %(Azlta + B,8,)
-1 KB, + nalXA.B, - A,B,) - XAB, - A.B,)1] sin £
7 KB,y (A B, = ABy) - F(ABy - AgB,

B, =

“2gn- t 398 + 3(AB; - BA)) ¢ (AR, - ABY)

n

1 1

-1 1
MEE'(AlAu + 813,4) - -f(A:J\2 + 3283)3] cos €+ ...,

3%f dA
21 3 1=
e Mat -2[-237\- - o024y

lelo2_a2y_Ln2._a2 -
+2[§-(82 Az) 5(31 A, )] + 2K( 433)

dB
1 = 3, 1 1
+ gnwlA B, - AlBl]} sin 2¢ -2[2——d ==+ 50(28;)+5(A B, -A,B))

1l -1 1l
+2K(-UA,) + T;“w('i'(Azz - 322) - -2-(A12-Bl2)]] cos 26 4 . .

E 228y

rug,, = <2|-at ¢ Boroan ] - dks s, - AA)
e By ¢ It ol - FUEIB B, - M)Ay

E

+ %-(3182 - A A)] + 2K[-uB,] - -;-na'[%ulazszl)JJ sin 2¢

-2"2ﬁ + 35028 irl Y4=(BA, +A,B.)]
“dn 29028, = FL3(B, A +A,B) J+5{ByA  +A B,
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+ 2K[-4A ) - %n;r.%ulaz - ‘1‘:’3] cos 26+ . . . (%.11)

vhere + . . . indicates terms multiplied by sines and cosines of integral
multiples of { other than those shown. The particular solutions corre-
sponding to the terms shown on the »ight-hand sides of (4.11) will contain
terms proportional to £ sin nf or £ cos nf [n = 1 for (4.11.a, ), n = 2
for (4.11.c, d)]. Thus, the second approximation would be unbounded for
large £ while the first approximation is bounded for all §{. These
unbounded terms are called singular terms. The terms on the right-hand
sides of (u4,11) indicated by 4+ . . . do not lead to singular term:.

The idea of a perturbation solution is that higher order terms in
the series solution represent small corrections to this first term to
obtain a uniformly valid expansion. The presence.of this singularicy
causes this fundamental idea to be violated. Therefore, since the expres-
sions of n dependency are independent of the variable causing the singu-
larity, the n-dependent expressions can be set individually equal to zero
to avoid this problem. Therefore, from equations (4,11), the resultirg
equations, which are eight ordinary first-order differential equatlons

having n dependency, become
1
Tt 39h + 5B ¢ E{AIAS + BBy + AA, ¢+ 323“]

+ 2otn.A

7nwlByAy = ABy + B A, - A8, ] =0

WS & S + a8, -BA, -AB, +AB]
dn 2771 271 T 71T T M1%s T MWhe 2%y




»Jo—-

+

a,

1= L. Ll
T R LA O

wlAjAy + ByBy ¢ AA, + BB =0

+ %’nSI-AiB“ + A8, +AB, - 33823’ =0

3

3
8,8, = AA, = B,0,] = 0
uKB, + %-t522 - 3,2 + 87 - A7)
A8,] = 0
MKA; + F{AB, = AB,]

2 . A2 2] =
5, A2 +B2)=0

1
4KB, + E{B B, - AA.])

TS ! 172
AzBl] =0

, 1
KA, - g{szAl + AzBl]

by

'y * BBy - Azhy - BB,)

1
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1
- awnfﬁihz - 31823 =0 , (4.12)

Since aquations (4.12) are first-order nonlinear ordinary differential
equations, the fourth-order Runge-Kutta program, previously developed,
can be used to solve for the modal ampl%tude coefficients, By finding
these coefficients for various points in time, a relation between the
results of equation (3.21) and equation (4.12) can be observed to the
approximation of order ¢.

Solving equations (4.12) for the highest derivative (first order
ir .his case) and substituting n = ct, the governing equations for the
Punge-Kutta program become

dA 1

i Y
Ty =c[-oAl 5&(31---(‘“\ + 3,8, + AN, +323u)

i —
= 30u(BiAy - AjB, + BAL - AR )]

dB; - 1 1
Toomelbgo8) +FA) - 5{(ABy - BiAy = AB) ¢ AB)

-%n:(AA + BBy + AA, + BB )]

27y

'QU“

1
E(A A +B B - A A - 3283)

- 1'.
T sel- 304, - 1%

]l -
- Eﬂw(Ausl = AB, + A3, - Aaﬁz)l

4B 1 1

2 )
w Cel- "’32’2“2'5‘3!4"‘1'%31*“35 - AjBy)
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=
- E““(AlAq + BLBM - A3A2 ~B B )J

'ffi:er-la - WKB, -~ A2 - B,2 +B,2 - A 2)
dt 23 382 T2 1 " "

l—
- §n“(A131 - A282)]

&

i el- —oB + uKA -(A2B2 - AlBl)

- 2 _p2._402 2
Tgnw(A B, Al + Bl )]

! 4 1- 1
It = cl- 50, - 4KB, - {{B B, - A)A)
- L50a.B, + AB)]
8 172
dB
4 _ 1- 1
r i e[- Z9B, + UKA, + E(BZAl + AzBl)
l_
+ §wn(AlA2 - 8132)] . (4.13)

It is often convenient to express the equations for Ai and Bi in
terms of amplitudes, Ci, and phase angles, ¢i’ which are also functions
of the slow time variable n. Mathematically, we can express the relation-

ships between the quantities as

>
1]

Ci cos ¢i (4.14.a)

=]
"

C; sin ¢, (4.14.b)




acy a;
T8 by ~Cign sindy

!.

dci d¢i
I sin¢ +ci-d—-—cos ‘i

3‘.

u?

(4.14.¢)

(u.14.4)

where i = 1, 2, 3, and 4 for each of the equations above. Substituting

the expressions of (u4.lu) into the first two equations of (4.12), the

resulting equations become

d¢

©
s -G T

1
sin $; * —-gcl cos ¢, + éKC sxn ¢
1 . s
+ 5{0103 cos ¢, cos ¢5 t C,C5 sin ¢; sin ¢,
+C.C. cos ¢, cos ¢, + C,C, sin ¢, sin ¢ ]+ ln_tC c
27y 700 ¥2 b oT2Te 2 yt T 2713
sin ¢, cos ¢4 - C,Cq cos ¢ sin ¢5 + CCy €08 ¢y sin ¢,
- C,C, cos ¢, sin ¢, =0

4ac do

1 1 1— 1
n sin ¢, t e an cos ¢, + Eucl sin ¢ - §xcl cos ¢,

L1 . .
+ -i{clc3 cos ¢, sin ¢ - C,Cy cos ¢ Sim ¢,

. . 1 ~
- C,C, cos ¢, sin ¢, + CC, coS ¢y SIN ¢,] + 700G S5

cos ¢, COs ¢4 + C Cy sin ¢, sin ¢ * C,Cy COS ¢y COS &
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+ C2C4 sin ¢2 sin @uJ =0, (4.15)

Multiplying the first equation by cos ¢l and the second equation by sin¢l,
adding the two expressions together, and using appropriate multiple-angle

identities from trigonometry, the resulting equation for Cl becomes

i, )
E— + EOCl + E{chSECOS(2¢l - ¢3)]

+ ¢,¢ [cos(o, - ¢, + ¢,)1} + %na'{clc3
sin(2¢l - ¢3) + C,C, sin(¢2 -4, t ¢l)} =0, (4.16)

Similarly, multiplying the first equation of (4.15) by -sin ¢l and the
second equation by cos ¢l’ adding the two expressions together, and using
appropriate multiple-angle identities for trigonometry, the resulting

equation for ¢l becomes

dé c.C
1 1 1 . 274,
e §K - Egc3 s:m(2¢l - ¢3) + —EI— sxn(¢2-¢u+¢l)]
1 — C,Cy,
+ Enw[c3 cos(2¢l-¢3) + _E;f'c°5(¢l+¢2-¢u)] =0, (4.17)

Using these procedures discussed above, equations for C2, 950 Ca, $35 Cy»

and ¢u can be derived, Thus, these transformed equations are

€, 1=, L1
T2 + 39C, + S1C.C, cos(9,-0,48,) - C,Cqc0s(24,-0,4)1]

+ %n?u'[clcusin((bl-q»umz) -c

2C351n(2¢2—¢3)] =0

LJ
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do 1. 1.5
-l E'K - 5{ = sin(91-§“+¢2) - Cy sin(292—¢313

1 =C1%
+ 5"“DTT-_ cos(¢1-¢4+¢2) + cscos(2¢2-¢3)J =0
S‘ia_ + -l-Ec + é{c 2c08(2¢,,-¢.) - C.2cos(2¢.-9.)]
dn T 2%3 T gt 27?3 1 COS149,-9,
- ——nw[C sin(2¢2-¢3) -C 2sin(2¢l-¢3)]
d¢, 1 "22 c.2?
T UKt gtca sin(2¢2-—¢3) - sm(2¢1-¢3)]

1.8 c,? .
+ Egn-fcs cos(2¢2-¢3) - cos(2¢l-¢3ﬂ =0
de

boo1—= 1 1 -
T * 39¢, - E{°1C2°°S(¢1*¢2'¢u)] + Enw[ClC2
sin(¢l + ¢2 - ¢4)] =0
dé, 1,.%1% C,C,
I - 4K +-—£ c, sin(¢ +¢ ¢ )] - -énw[ .
cos(¢l t 4y - ¢R)J =0, (4.18)

Equations (4.16), (4.17), and (4.18) are the general combustion

equations in terms of amplitudes and phase angles. From this point,

special cases can be investigated isolating certain conditions and closed-

: ‘*‘ i
Y. ik, |
bt s
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form solutions can be obtained for these cases. It is convenient to do
this in order to check the closed-form results of thé special cases with
the results from the general equations (4.16), (4.17); and (4.18) when
the same conditions are imposed.

The first case to be evaluated i; the case for standing waves
with no combustion effects. To simulate standing wave effect, set the-
amplitudes C2 and Cu and phase angles o and ¢, equal to zero. This
automatically satisfies four of the eight equations (4.18). To achieve
the no-combustion effect, set the interaction index, n, equal to zero.
Also, set the correction variable, K, equal to zero since the effect of
K will be investigated separately at a later time. Imposing these con-

ditions, the governing equations reduce to

4ac

l1 . 1 - 1l =
T3 oC; + 5 C,Cq cos(2¢l-¢3) =0 (4.19.2)
d¢

1 1 . =
T - 7 [Cgsin(26)-45) = 0 (4.19.b)
dc

3 .,1- 1.2 - -
Tt 3 oCy - 5 C; cos(2¢l ¢3) =0 (4.19.¢)
d¢ c,?

3 _}._J_'_. i - = {u
& CET, sin(24;-¢4) = O. (#.19.d)

The initial conditions imposed for this case are

Cl(O) =1
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cy(0) =0
$,(0) = 414
$3(0) = 054 -, (4.20)
To attempt a closed-form solution, let . L
¢, = e_%E"Fl (4.21.a)
c, = e'¥5ﬂp3 (4.21.b)
;;l = e’*an(- o)F, + e-%ﬁn(ggi) . (4.21.¢) |
§§§.= 5N o)F, + e-%an(§§§) . (4.21.4) |

Substituting these expressions into equations (4.19.a) and (4.19.c) and

dividing through by e-%on, the resulting equations become i

dr

1,1 -%onF.F, = 0 (4.22.a)
ET-\— + 2 008(24}1 - ¢3)e 13
dF 1 -3gn »
_— - - 2 = el
n 5 cos(24, - ¢3)e Fl 0, (4.22.b)

Multiplying equation (u4.2.2.a) by 1/4 and equation (4.22.b) by Fa/Fl and

-1
adding the two equations, terms containing the cos(2¢, - ¢5)e EN are

eliminated. In doing so, the result becomes
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dr ¥, dF
1 3 ¥y
ot a0 (4.23)
Multiplying through equation (4.23) by F, gives
1d (2 2y - ’
5 [F2 +uF21 =0, (4.24)

Integrating with respect to n then dividing by 1/2, the resulting equa-

tion becomes

F.2 ¢ ur32 =D (4.25)

1 1

where Dl is a constant of integration. This constant depends upon the
initial conditiors imposed on the problem. From the initial conditions
given in (4.20) and using the transformation (4.21.a) and (4.21.b), it can
be shown that Pl(o) = 1 and F4(0) = 0. Therefore, D, equals to l. Thus,

equation (4,.25) becomes

2: - 2
rl 1 4Fg? (4.26)

Taking equation (4.26) and substituting into equation (4.22.b), then

separating variables, the resulting equation becomes

dI-"3

—_— %e-%oncos(2¢l-¢3)dﬂ . (4.27)
[1-uF,2]

Letting 2¢. - ¢, = £€n, which satisfies equations (4.,19.b, d), yields
17 % y

cos(2¢l - ¢3) = (-l)£ where £ = 0,1,2,3. . . Substituting this expres-

sion and integrating the above equation, the resulting equation becomes
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bl oFy = g(- 2 e ¥up 31t (4.28)

where D, is a constant of integration. Using the initial condition FS(O)'

0, then, it can be shown that D, = 2/u. Substituting and taking the

2
hyperbolic tangent of both sides of equation (4.28), the result becomes

F, =;5tanht-155<-1)‘(1-e"‘-‘°“)] . (4.29)

Substituting this expression into equation (4.26) and simplifying, the

resulting equation becomes

L -
Fy = sechl{= (1-e7¥M] | (4.30) 2
20 §

i

Substituting equations (4.29) and (4.30) into equations (4.2l.a) and

(4.21.b), and substituting n = et and @ = Je, the resulting closed-form

solution for wave amplitudes Cl and C3 are

- £ -
¢, = e-*wt{sechﬁﬁﬁlg——(l-e_%wt)]} (4.31.a)
2w
kot 2 -
Cy = g 3 {tanh[E(-}) l-e_%mt)]} . (4.31.b)
2w
To find expressions for ¢l and ¢3, substitute the relation that 2¢l-¢3=£n

into equations (4.19.b) and (4.19.d) and integrate and evaluate the con-

stants of integration with the initial conditions; the results are

91 = 49
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93 % b = 24447 (4.32)

where %o is a constant and 9y is Lr radians cut of phase with 24,0 It
can be seen that a special set of initial conditions is necessary to be
consistent with this solution. A representative set is ¢l° = ¢3° r 0
which corresponds to £ = 0, .

Inspection of equations (4.31) reveals that the magnitude of 01‘
continually decreases with time while the magnitude of Cy first increases
and then decreases. An interesting special case of equations (4.31)

occurs in the absence of steady-state combustion (@ = 0). The results of

this case are

2
C1 = sech[izl%-EEJ
o o Lpc(-fe (
3°7% tanh[~T—] 4,33)

These results show that a disturbance in the form of the first mode is
transferred to the second mode as time increases. It is thought that this
indicates the beginning of the steepening that leads to the formation of a
shock wave. It can be seen that the presence of damping, in the form of
steady-state combustion, inhibits this process.

The second case to be investigated is that of standing waves with
gas-dynamic nonlinearities neglected. To simulate the standing wave

effect, let the amplitudes C, and Cy and the phase angles ) and 4y, equal

2
zero. Again, this automatically satisfies four of the eight equations of
(4.18). To achieve omission of gas-dynamic nonlinearities, let i = 0.

Also, let the correction variable, X, be equal to zero for simplicity.




In doing so, the resulting equations, based upon equation (4.18),

becomne

Nj-

T+ -’;: %, + 7 nalC,C, sin(2¢, - $,)] = 0

ot -;; nZ.‘:CC3 cos(2¢, - ¢,)] = 0

1 - 1 - -
Tt % 16 m»t-cl2 sin(2¢l - 4)]=0

2
do3 1 .. C
ot -l?nw[-ag cos(2¢, - 9,01 =0 (4.34)

The initial conditions imposed for this case are

Cl(O) =1

C4(0) = 0

$,(0) = ¢4

950) = ¢4 . (4.35)

Let 2¢, - ¢, = (2 + 1)n/2, £ 20,1, 2. ... This implies that sin(2¢l
- 9,) = (-l)L and cos(2¢; - ¢5) = 0. Substituting into (4.34) and solving
in the manner indicated previously one obtains expressions for the ampli-

tudes for C. and 03 which are

1

Cl s e';i‘"t{sec[-r% ne(-l)c(l-e'iﬂt)]} (4.36.a)
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‘ﬁt ﬁ L -ﬁt
. & {tan[== ne(-1) (1=e" " )]} (4.98.b)
¢y = S 4 vl
% % % (4.38.¢)
93 = 2039 - 2%§£ v, (4.36.4) »J;

where %, is constant and ¢, is (28+1)%/2 radians out of phase with 201.
As in the previous solution, special initial conditions are required to

0, s -w/2, which

%30

E produce this solution. A representative set is 010

corresponds to £ = 0.

The secant and tangent both become infinite when their arguments

take on the value in/2, In (4.36.a, b), the arguments of these functions

start at zero at t = 0 and have a maximum absaluté value at n=/23/2.

Thus, if nt:/'l’a/2 < /2, the tangent and secant never become infinite and

- C, and c3 eventually decay to zero due to the influence of the exponential

l
F' function. This is a stable situation. If, on the other hand, nc/23/2 >

%/2, the tangent and secant become infinite at t_ = (2/5)]&n[l—2¥1/(nc)])

causing C, and C3 to become infinite., This is an unstable situation.

1
Thus, the boundary between stable and unstable behavior is indicated by

the equation

f , ne/2%% = w2, (4.37)

The stability equation in the n-¢ plane has the form

n= 2*«/: = W, uk2/e, (u,38)

This has the form of a rectangular hyperbola and is independent of @,
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For the case of traveling waves, it is more convenient to work
with the general perturbation squations expressed in modal amplitudes
in terms of the real time variables, equation (4.13). To simulate the
effect of spinning or traveling waves, let the following modal ampli-
tudes be squal. These relations are

32 = Al

Bu = A,

By =4

33 5 -Au . . (4.39)

It can be shown that substituting the relations (4.39) into equation
(4,10), expressing the results in terms of the real time variables, sub-
stituting these expressions into equation (3.18), and using appropriate

multiple-angle formulas leads to

$(0,t) = Alcos(t-e) - Azsin(t-e) + A,cos 2(t-0)

3

'A“Sin 2(t"e) + * = 8 . (“.“0)

which has the form of a sum of traveling waves. Substituting the expres-
sions in (4.39) into equations (4.13), these eight equations reduce to
four pairs of identical equations. The four independent ¢ .ations listed

below are

dA
1 1=, 1 "
To = cl- 5 A H5KA- (A AL +A A, )-nu(A A -4 A )]

i ...l
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M""'.. [-35A, - 2 KA -2CA,A -A )+nw(A A +A.A,)]
To- " Sle 7oAy = 5 KA -L(AA, - A ) tnulA A, +A A,
a 2 cl- 1 GA+UKA + 21(A,2-4,2)¢20a(A A,)]
I TR B Mtk "M L Wi A S B
M“‘- t-lc'm -am+l1(AA);l'(A 2.4,2)] (4.41)
To * ELm 7 OA At 7 AA A7 grwta T=Atld ‘

By making the substitution, we have reduced to a system of four equations
and four unknowns. By solving for the modal amplitudes Aj' the modal
amplitudes Bj are readily computed by using the relations of (4.39) to
determine the entire nature of the wave form.

For the case of traveling waves omitting gas-dynamic nonlinearities,
let the amplitudes Al and A3 equal zero. Tr.a seé i, the gas-dynanmic
index, equal to zero. Again, for simplicity, let the correction variabie,
K, controlling physical chamber configurations, be zero. In doing so, in

terns of the transformation variable, n, the resulting equations become

&Aaa - nafAA ] = 0
dn 2 2 24

- %-n; A =0 (4.42)

1-
T—tZ0A 2

N

which {s a system of two equations and two unknown modal amplitudes. To

find an exact closed-form solution to these equations, let

LRI




—“ " e-%;n(-

%

= o)f

%-5)?2 +t e

+t e

¥on

2

$9

(4.43)

Using these transformations, the procedure for solution is exactly the

same as for the standing wave case for both no combustion and no gas

dynamics. The initial conditions for this case are

Az(O) =1

A,0) = 0

(4.u4b)

Substituting the expressions of (4.42) into (4.4l), the resulting equa-

tions are

dr

dF,

dn

with initial conditions

rl(o) =1

F,(0) =0

12

1

—“--%n;?ze

- nof.F. e M 2 ¢
n

-Non _ 4

(4.u45)

Solving these equations in the manner outlined in the standing wave solu-

tions, the results are
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1 2 o
taﬁffr&' -&an
F, 3 ——{-% — (l-e 3 . (4.46)
2 3?2

Expressing the results of (4.45) in terms of modal amplitudes by substi-

tuting into (4.42), the resulting equ.‘ions become

A, = e-%a"sec[fg-gé (1—e'%°n)]

g

~¥in R
= 258 (178 (4.47)

A = ———— tan[e— —
Yoo 2 3

The results for traveling waves (4.47) are quite similar to the results

for standing waves (4.36) for the case of no gas-dynamic nonlinearities.

The same behavior can be expected as was discussed in the standing wave
case about the nature of oscillation of the modal amplitudes. The only

significant difference is the value to deterr’=z the boundary of stability

for the interaction index governing the combustion terms. The stability

condition for traveling waves is

Y2 . T
1 = T c 7, (4.u8)

Thus, the equation of the stability boundary in the n-¢ plane is

Qe T 2.22
2T [ (’4.'49)

€ €

Comparing equation (4.49) to (4.38) shows that the stability boundary for

the interaction index is half as great for the traveling wave case as for




the standing wave case for any .
sentation of results of various numerical cases.

i
For the case of traveling waves with no combustion, let the ampli- ; ;1
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This will be yerified in a later pre-

tudes A2 and A, equal to zero. Then set n, the interaction index, equal : %

to zero, and, again, let the correction variable K equal to zero.

stituting into equations (4.40) and transforming into variable p, the .

results are

B L S

with initial conditions

results are

transformations as shown in (4.42).

Sub-

¥
v

da
l 1 - -
—dn +‘2-GA1+A1A3-0
dA L
3,1-4 1,2 .
- + 70 A3 -3 Al =0 (4.50) ;
A(0) =1
A3(0) =0

which again is a system of two equations and two unknown modal amplitudes.

To find an exact closed-form solution to these equations, use similar

In doing so, and simplifying, the

%on -
+ e F1F2 =0

(4.51)
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with initial conditions.

]
[

F,(0) =

]
[«]
.

F,(0) =
Solving these equations in the same manner as before, the results are

= sech[l/E(l—e-%an)]

o)
1]

F, %-tanhn/al-e'*"“)] . (4.52)

Again, expressing the results of (4.51) in terms of the modal amplitudes

of the form of equation (4,43), the resulting equations become

= e_%ansech[l/B(l-e-%an)]

o
]

~%0n

3 & > tanh[1/3(1-e"¥M7 | (4.53)

The results for the traveling waves (4.52) are similar to the results

for standing waves (u4.31) for the case of no combustion. A disturbance
initially having the form of the first mode eventually is transformed into
one having the form of the second mode. To compare these results for
standing waves and traveling waves to the general perturbation equations,
two computer programs were written (Appendices D and E) which numerically

evaluate the modal amplitudes of various conditions for standing and

traveling waves.
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One last special case is an investigation of the effect of the
correction variable K. In the special cases previously discussed, the

correction variable K was set equal to zero.

But, in this discussion,
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the correction variable K will be of primary importance in the equations.

To start this analysis, refer to equatibns (3.21). Based upon these

equations, impose the following conditions.

First, neglect combustion

effects (i.e., n = 0). Then, let us consider only the case of standing

waves (i.e., g =& = 0). Finally, let us neglect the steady state
burning rate (i.e., 0 = 0) and assume that the terms multiplied by eK

are larger than those multiplied by e above.

by writing

[

and treating Kl as a quantity of 0(1). Imoosing the above conditions

This can be accomplished

(4.54)

and substituting equation (L4.54) into the equations (3.21), the result-

ing equations become

d2f1

[l+Kl] " + fl + 2¢[f
dt
dzf2

[1+L+Kl] o + uf2 - ¢f

with initial conditions

fl(O) =1

2 dt

ld

(4.55.a)

(4.55.b)
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A A oo, . i

af, p | y
tﬁo) = o s

de
F =0 o

First, assume a straightforward perturbation solution similar to the

equations (4.6) except the functicns are dependent upon the real time t.

Substituting these assumed solutions into the equations and initial con-

é ditions of (4.55) and keeping term:z of 0(1l) and 0(e), the separated

l equations become
% d2¢
g 10 1
; + £ =0 (4.56,a)
\; ag2 (1K) 710
+ £f.. =0 (4.56.b)
dt2 (1+4Kl) 20
2
“n * (1ix iy, = (13& 7{'fzod:io - flodjio] (4.56.c)
dt? 1 1
d2f21 m 1 40 )
= r . ]
o2 + (l+uxl)f21 (1+4Kl)“flo 33 (4.56.4)

with initial conditions

flO(O) =1 fll(O) =0
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af af |
10 - 11 - y
-EE-(O) z 0 -3?-(0) =0 ‘1
L
f20(°) =0 'le(o) =0 f ’
df ,(0) . af,,(0) o
dt dt '
The first-order equations (4.56.a and b) can be solved by assuming the
usual assumed solution for linear differential equations. Doing this
and applying the appropriate initial conditions, the results for the
first-order terms are l ;

1
f = oS j——— t
10 ~ l+Kl
fzo = o . (u. 57)

Substituting (4.57) into the right-hand side of (4.56.c) the equation
becomes a homogeneous linear differential equation, Solving in the

usual manner and applying the appropriate initial conditions

. (u.58)

Substituting (4.57) into the right-hand side of equation (4.56.d4), the
resulting equation becomes a linear differential equation with a particu-
lar solution. By assuming an appropriate homogeneous and particular

solution and evaluating the constants using the appropriate initial condi-

tions, the result becomes




1
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f2l * K sin t+ o Jl+Kl sin t, (4.59)
1 /1+ux1 1 ' Jl+Kl

Therefore, substituting equations (4.57), (4.58), and (4.59) into the
assumed perturbation solution and letting Kl = g¢K, the resulting equations

become

£, = cos 1. (4.60.a)
Y1+Ke
/TroeR /T+ke

Recall that in the two-variable perturbation method, fl and f2 expressed

in terms of the perturbation variables were

+h
"

Al(n) cos £ + Bl(n) sin £ (4.61.a)

H
]

= Aa(n) cos 2E + 33(") sin 2¢ ., (4,61.b)

By transforming equation (4.60.a) into perturbation variables and expand-
ing the argument of the cosine function by the Taylor series and using
appropriate sum and difference trigonometric identities fl can be

expressed as
_ 1 . 1 .
fl = cos 3 Kn cos £ + sin 3 Kn sin g, (4.62)

Therefore, comparing this to equation (4.61.a), the functions Al and Bl

must be
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A (n) = cos L xn
1 2
B.(n) = sin = Kn (4.63)
it 2 e .
By similar procedure, it can be shown that evaluating equation (4.60.b)
and comparing it to equation (u4.61.b), the results are
A3(n) = E%E{Sin 4Kn - sin Knl
.1
By(n) = mielcos Kn - cos uxnl (4.64)

To show the validity of equations (4.63) and (4.64), the problem is now
solved using equations (4.12) which are derived from equations (3.21) by
the use of the two-variable perturbation method. To reproduce the condi-

tions imposed on the problem just discussed, let there be no combustion

(i.e., n = 0), let there be no steady-state burning rate (i.e., o = 0),

and let there be only standing waves existing (i.e., A2 = Au = 32 = Bu =
0). Imposing these conditions on equations (4.12), the resulting equa-

tions become

dA

1 1 1l -
e + 5-KBl + E{AlAs + 5133] = 0
dB

1 1 1 -
T --2-KA1+-§{A133-31A3]-0
iA;-3-+“KB vdaz o a21:0
dn 3 81 177

-4
1
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dB, 1
e HKAS - ?AlBl =0 . (4.65)
In the previous solution it was assumed that the frequency correction
terms were larger than the gas-dynamic nonlinearities. To be consistent

with this assumption the following procedure is used. By a change of

variable n = g/K, equation (4.65) can be rewritten as

My ls Ll ran,+58,1x0
dz 271 2K *7173 173

dBl-~3'-A +: [AB. -BAJ=0
It -7 A g [A8; - BiAg

dA3 1 2 2
a?-"'uBa"‘W[Bl -Al]=0

3 1 _
I - 48 - ix AlBl =0 , (4,66)

Assuming a straightforward expansion of the form

_ 1
Al-Alo+KAll+...
) 1
By =B *g Byt -
A=A +=A.. +
3 B3t KAyt -
B.=B. +SB.. +.. (4.67)
3 B30 *tgBayte - .
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then substituting these expressions into the equations (4.66) and keeping

terms of 0(1) and 0(1/K), the resulting separated equations become

i:'!cﬁ*%nlo =0
dto-%Alo =0
EQ%Q + 4By = 0
dzi° - BAgo = 0

1 1
3zt 2811 * - 3lA0A50 t BioBaod

dB
o1, . 1
3 -3 A T - 2TA0Ba0 - Biotso)
dA )
31 s -Xrg 2_, 2
Tt YBay T - glB10" - Aypd

1
—ar - Y31 = TlAp0B)0]

with the initial conditiens

"
-

"
o

A (0) =2 B,o(0)

1
(=]

(|
Lo

All(o) = Bll(o) s

(4.68.a)
(u.se.b)t
(4.68.¢)
(u.68.4)
(u4.68.e)
(4.68.f)
(4.68.8)

(4.68.h)
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Ayof0) = 0 Byo(0) = 0

A
Aal(O) t 0 331(0) =0 . : !

Since the first-order equations are coupled, differentiate equations
(4.68.a and c) once with respact to { then substitute equations (4.68.b 3

and d) into these equations resulting in

]
d A

1 -
a2 Bhetl E
da2p . g
-—‘:—° + 16Ay0 = 0 (4.69)
dg

As can be seen, equations (4.69) are linear differential equations
which can be evaluated by the usual manner. In doing so and applying
the appropriate initial conditions, the resulting first-order modal ampli-

tudes are

>
§
|
g
i

10 ~

A

]
(=

30 %0 . (4.70)

Knowing values for Alo and A 0° substitute these values into equations

3
(4.68.b and d) and apply appropriate initial conditions. The results

become

w
'

1l 1
10 © sin 36 = sin EKn

Bao = o . (uc.’l)




7

Substituting the results of (4,70) and (4.71) into the right-hand side of i

equations (4.68.e=h), the resulting equations becone

-Tl;i B - % Bll (“o??ua)

11 ‘
o+ Uy = 3 cos ¢ (4.72.¢)

e L
=< - YAy, =g sing, (4.72.4)

Since equations (4.72.c and d) are coupled, differentiate both equations
once with respect to { and substituting equations (4.72.c and d) into the

appropriate terms of the new set of equations, the resulting equations are

2
d A3l

dg?

; 5
+ .LSAal -3 sin ¢

42831 5
— 16331 =gcos it . (4.73)
dg?
Equations (u4.73) are a set of linear differential equations with homo-
geneous and particular solutions. Solving these equations in the usual

manner and using the appropriate initial conditions, the resulting modal

amplitudes are

1
Asl = .2_}‘ (sindg - sing) = ﬁ(sinuKn - sin¥n)
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331 s E%(cosc - cosig) = E%(coskn - cosuXn', (h.74)

In a similar manner, the results for the modal) amplitudes \,, and B,, can

11 1l
be determined to be
All = 0
311 0 (4.78)

evaluated with the appropriate initial conditions. Therefore, substitut-
ing the results of (4.70), (4.71), (u4.73), and (4,74) intoc the assumed

perturbation solution of (u4.67), the resulting modal amplitudes become

i

A'c°32Kn+nuo

2
0

1
[
1 sin 2 Kn+ ...,

A, = E%R(Sin bn - sin Kn) + . .

By = 3%?‘81“ 4Kn - sin Kn) ¢+ . . . . (4.76)

It can be seen that equations (4,76) are identical to equations (4.63) and
(4.64). This indicates that the two-variable method produces the correct
solution. Equations (4,60) indicate that the presence of K changes the

frequency of each of the first two acoustic modes and further renders the

ratio of the second frequency to the first a non-integer number in generzl.
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Equations (4.76) show how this effect manifests itself in the two-variable
perturbation solution.
These results can be used in another way. If the nonlinear terms

are neglected in (u4.55.a), the results are

dzfl
(1+x1) — fl = 0
de?
d2f2 af,
(l'N)Kl) d—t—z— + “fz - Efl F = 0
7 dfl(O) dfz(O)
fl(O) = l' dt = O’ f2(°) = 0. —d?_ e 0. (“07,)

It can be easily shown that equations (4.60) constitute the exact solution
of equation (4.77). 1f the corresponding terms are neglected in equations

(4,65), the results are

dA
1.1 -
e B
d—.Bi-.l.'.KA = 0
dn 2 71
A lip.2 2
-d-;—‘ﬁ'uxBafg(Bl -Al)=0
dB, 1
Frol 4KA, - 4 AB, =0 (4.78)

where

[

445""-«:,14 4
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A 00) =1
B,(0) = 0
A (0) =0
B,(0) = 0.

It can be shown that equations (4.76) are the exact solution of equation
(4.78). These facts were used to check the accuracy of the computer pro-
grams to be discussed later.

In the remainder of this thesis, a comparison of the magnitudes
of the modal amplitudes will be represented in graﬁhical and tabular
form. Under a given set of conditions, the acoustic modal amplitude pro-
gram, the general perturbation program, and the analytical cases that
were programmed will be used and results compared. Varying certain con-
ditions will show their effect on the changes in magnitude of the modal
amplitudes through a set range of time which is related to maintaining
stability. From these various cases, it will be determined which param-
eters and conditions have the greatest effect in changing modal ampli-
tudes and which in turn affect the stability criieria for combustion

by the methods discussed above.
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Chapter 5
DISCUSSION AND PRESENTATION OF RESULTS

In this chapter, results are presented both in graphical and
tabular form which are representative of the results generated by the
programs listed in the Appendices B through E. From these representative
sets of results, basic observations will be made to observe which
parameters or conditions have the greatest effects on the problems of
stability.

In Figures 3 and 4, modal amplitudes F, and F2 are graphically

represented versus time for a stable standing wave case. For these

. ' '
figures, F,(0) = 0, ri'(o) =1, F,(0) = 0, F, (0) = 0, Gy(0) =0, G (0) =

0, G,(0) = 0, Gz'(o) =0,n=235,1=1, K=0, ¢ = 0.1 and w = 0.1.
The step size used was 0.1. Experimentation showed that this was a small
enough step size to produce accurate results and was used throughout.
From these figures, one notices that both the first and second order modal

amplitudes decrease in amplitude with increasing time. Also, F,, the

29
second order modal amplitude, tends to oscillate at twice the frequency of
F1. These figures are based upon one set of parametric values; however,
these figures represent qualitatively the results obtained using a wide
variety of initial conditions and parametric values. In Figures 5 through
8, modal amplitudes F,, F2, Gy, and G, are grap’ ally represented versus
time for a stable traveling wave case. For these figures, F1(0) =0,

F,'(0) = -1, F,(0) = o, 6,(0) = 1, Gl'(O) = 0, G,(0) =0, G,'(0) = 0,

2
n=15,1i=1, K=0, w=0.1and € = 0.1. The general shape of the

75
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curves and the relative‘ffequencies of oscillation are qualitatively
similar to che stable standing wave case.

In Figures 9 and 10, modal amplitudes F, and P2 are graphically
represented versus time for an unstable standing wave case with the
same conditions as the stable case except that n = 50. As can be seen,
the maximum amplitude of F1 starts to d;crease then increase dramatically
for increasing time. The maximum amplitude of F2 increases continuousl&.
In Figures 11 through 14, modal amplitudes Fl’ F2, Gl' and G2 are
represented versus time for an unstable traveling wave case. Again, the
conditions are the same as for the stable traveling wave case except that
n = 30. Drastic increases in amplitudes are observed for all the modal
amplitudes shown as time increases. The behavior is similar to the
unstable standing wave case. The period of time for traveling waves to
become unstable is about one-half the period of time for standing waves
to become unstable. Thus, it seems that traveling waves are less
stable than are standing waves.

In Tables 1 and 2, a comparison of results is presented for modal

amplitudes I-"1 and F2 for a stable standing wave case, For these cases,

F1(0) = 0, F,'(0) = 1, Fp(0) = 0, F,'(0) = 0, ¢(0) = 0, G,'(0) = 0,

0, Gp'(0)

0, n=60, €=0,1, and w = 0.1. These tables

G,(0)
quantitatively show the effect of neglecting gas dynamic non-linearities

on the accuracy of the computations. Also, a comparison can be made
between the exact solution method (Appendix B program) and the perturbation
solution method (Appendix C program). From Table 1, one can observe that
the effect of neglecting gas-dynamic nonlinearities is small where
quantitatively comparing values of the modal amplitude F;. Even though,

quantitatively, the values for the exact solutions and perturbation

T P
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Table 1. Comparison of Results for F, Showing Effects of Gas Dynamic
Index (i) - (Fy =0, F)' =1, Fp=z0,F' 20,6, =0,

G,' = 0) - Stable Cases (n = 60) - Standing Waves

1 =°,G2

W

i=1 {1 =0
K=1 K=1

t _Exact Perturbation Exact Perturbation

Solution Solution ' Solution Solution
0.2 0.19699 0.18712 0.19699 0.18702
0.4 0.38335 0.36u26 0.38338 0.36386
0.6 0.55252 0.52540 0.55259 0.52u462
0.8 0.69856 0.66518 0.69885 0.66400
1.0 0.81627 0.77905 0.81719 0.77758
1.2 0.90132 0.863u0 0.90354 0.86186
1.4 0.95043 0.91572 0.95489 0.914u3
1.6 0.96159 0.83u61 0.96936 0.93399
1.8 0.93u32 0.91986 0.94632 0.92040
2.0 0.86985 0.87244 0.88656 0.87u6b6
2.2 0.77125 0.79443 0.79242 0.79884
2.4 0.6u4330 0.68895 0.66783 0.69602
2.6 0.49211 0.56003 0.51822 0.57016
2.8 0.32469 0.u12y47 0.35021 0.42593
3.0 0.1u4827 0.25167 0.17115 0.26856
3.2 -0.03017 0.08340 -0.01142 0.103686
3.4 -0.20430 -0.08633 -0.19032 -0.06300
3.6 -0.36859 -0.25158 -0.35912 -0.225686
3.8 -0.5182% ~0.40659 -0.51242 -0.37879
4.0 -0.6u4917 -0.54604 -0.64583 -0.51727
4,2 -0.75738 -0,66519 -0.75583 -0.63655
4.4 -0,83921 -0.76006 -0.83953 -0.73278
4.6 -0.89118 -0,82756 -0.89450 -0,80297
4.8 -0.9102¢% -0.86556 -0.91868 -0.8u50L
5.0 -0.89u4y -0.87297 -0.91049 -0.85789
5.2 -0.84300 -0,8u497¢9 -0.86909 -0.841u3
5.4 -0.75726 ~0.79704 -0.79483 ~-0.79656
5.6 -0.64071 -0.71679 -0.68959 -0.72514
5.8 -0.49885 -0,.61200 -0.55708 -0.62988
6.0 -0.33868 -0.486u6 -0.40279 -0.51u427
6.2 -0.16794 -0, 34466 -0.23365 -0.3824Y4
6.4 0.00574 -0.19159 -0.05742 -0.23901
6.6 0.17554 -0.03259 0.11809 -0.08892
6.2 0.33582 0.12685 0.28578 0.06271
7.0 0.u8221 0.28126 0.u3974 0.21080
7.2 0.61134 0.42538 0.57552 0.35042
7.4 0.72042 0.55435 0.68999 0.47703
7.6 0.80682 0.66387 0.78099 0.58653
7.8 0.86778 0.75032 0.8u4693 0.67550
8.0 0.90042 0.81090 0.886L4 0.74121

89
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Table 2. Comparison of:Results for Fy Showing Effects of Gas Dynamic
Index (i) - (Fy =0, F}' =1, Fp=0,F) =0,6 =0,6,"=0,6,=0,
Gp' = 0) - Stable Cases (n = 60) - Standing Waves

1

M
i=2] i=0
K=1 K=1

t Exact Perturbation |° Exact Perturbation

Solution Solution Solution Solution
0.2 0.00012 ~0.00u85 0.00003 -0,00253
0.4 0.00113 -0.01308 0.00043 -0.009838
0.6 0.00422 «0.02223 0.00205 -0.01865
0.8 0.01060 -0.02944 0.00602 -0.02784
1.0 0.02110 -0.03215 0.01336 =-0.03424
1.2 0.03582 -0.02854 0.02471 ~0.03553
1.4 0.05397 -0.01795 0.03497 -0.03023
1.6 0.07375 -0.00104 0.05816 -0.01798
1.8 0.09260 0.02022 0.07742 0.00026
2.0 0.10749 0.04283 0.09521 0.02232
2.2 0.11543 0.06317 0.10863 0.04514
2.4 0.11407 0.07764 0.11493 0.06516
2.6 0.10215 0.0831¢9 0.11198 0.07891
2.8 0.07988 0.07788 0.09878 0.08357
3.0 0.04909 0.06128 0.07573 0.07745
3.2 0.01309 0.03u461 0.04478 0.06031
3.4 ~-0,02375 0.00071 0.00929 0.03352
3.6 ~0.05653 =0.03632 -0.0263¢ -0.00006
3.8 -0.08051 -0.07164 -0.05749 -0.03640
4.0 -0.09180 -0,.10031 -0.07945 ~0.07083
4,2 -0.08798 -0.11801 ~0.08865 -0.09863
4.4 -0.06850 -0.12165 -0.08296 -0,11571
4.6 -0.03490 -0.10993 -0.06211 -0.,11921
4.8 0.00924 -0,08353 -0.02786 -0.10793
5.0 0.05868 -0.04515 0.01610 -0.08257
5.2 0.10711 0.00077 0.06458 -0.04571
5.4 0.14796 0.04864 0.11144 -0.00152
5.6 0.17534 0.09236 0.15041 0.04468
5.8 0.18493 0.12615 0.17593 0.08718
6.0 0.17466 0.14534 0.18393 0.12042
6.2 0.14513 0.14599 0.17255 0.14004
6.4 0.09957 0.13035 0.14243 0.14314
6.6 0.04352 0.09700 0.09680 0.12888
6.8 -0.01592 0.05073 0.0411 0.09857
7.0 -0.07104 -0.00295 -0.01771 0.05557
7.2 -0,11448 -0.05745 =0.072058 0.00488
7.4 ~-0.14027 -0.10594 -0.11471 -0.04743
7.6 -0.14458 -0.14223 -0.13988 ~-0.09498
7.8 -0.12628 -0.16158 -0.14384 «0,13189
8.0 -0.08716 -0.16128 -0,12556 -0.15352
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solutions are not exactly the same, the order of ﬁagnitude and behavior
of result; is similar. From Table 2, the same observations can be made
for the behavior of F,. There is, however, more error, quantitatively,
between the results for exact and perturbation methods and a region of
qualitative inaccuracy between the exact and perturbation solutions exists
near t = 0, This takes the form of a difference in sign of'}'2 between
results from the exact solution as co&pared to the perturbations solution.
This discrepency occurred also in the other calculations performed (not
shown) and will be discussed in more detail later in this chapter.

In Tables 3 and 4, a comparison of results is presented for modal
amplitudes F, and F, for a stable standing wave case. The initial
conditions for the results in these tables are F,(0) = O, ri'(o) = {,
F,(0) = 0, F,'(0) = 0, 6,(0) = 0, G,'(0) = 0, G,(0) =0, G,’(0) = 0,
n=1Uu0,e = 0.1, and w = 0.1. However, these tables quantitatively
present the effect of deviations of the ratio of the second acoustic
frequency to the first from the integer value of 2 (this is controlled
by the parameter K). These results show that solutions for finite values
of K are qualitatively similar to those for K= 0. This indicates that
the ratio of the second acoustic frequency to the first does not have
to be an integer in order to produce the type of behavior observed here.
A ratio near an integer value will lead to similar results. Tables 3
and 4 also allow a comparison to the results generated by the program
in Appendix D for the approximate analytical solution (4.31). These
results presented in the last column of Tables 3 and 4 can be compared
to the fourth column in each of these tables to determine the accuracy
of (4.31). These comparisons present further evidence that the neglect

of gas dynamic nonlinearities does not have an important qualitative

effect.
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Table 3. Compariscn of Results for F, Showing Effects of the Correction
Variable (K) - (Fy = 0, F;' =1, Fp = 0, F,' = 0,06y =0, 6' =0,

Gy = 0, G' = 0) - Stable Case (n = 40) - Standing Waves

1 =1 i=1 i=0

K=1 K=20 K=0

t Exact Perturbation Exact Perturbation | Analytic
Solution Solution Solution Solution Solution

0.2 0.19699 0.18707 0.19670 0.19678 0.19671
0.4 0.38335 0.36396 0.38172 0.38210 0.38186
0.6 0.55254 0.52460 0.54795 0.5u4880 0.548u43
0.8 0.69887 0.66358 0.68903 0.69093 0.69029
1.0 0.81667 0.77635 0.79957 0.60302 0.80234
1.2 0.90247 0.85935 0.87537 0.88124 0.88075
1.4 0.95312 0.91014 0.91361 0.92306 0.92304
1.6 0.96699 0.927u44 0.91310 0.92740 0.92820
1.8 0.94390 0.91120 0.874u3 0.89u88 0.89666
2.0 0.88523 0.86255 0.80001 0.82676 0.83027
2.2 0.79388 0.78374 0.69393 0.72690 0.73221
2.4 0.67411 0.67805 0.56163 0559954 0.60682
2.6 0.5312¢ 0.54969 0.409u48 0.45016 0.45947
2.8 0.37154 0.40358 0.2u432 0.28805 0.29627
3.0 0.20133 0.24520 0.07300 0.11102 0.12386
3.2 0.02712 0.08039 -0.09782 -0.06u84 -0.05085
3.4 -0.14491 -0.08439 -0.26190 -0.23547 -0.22097
3.6 -0.30801 -0.24474 -0.41335 -0.39410 -0.37989
3.8 -0.45992 -0.39354 -0.54662 -0.53453 -0.52152
4,0 -0.59287 -0.52617 ~0.65660 ~-0.65139 ~0.64055
4,2 -0.70357 -0.63813 -0.73872 -0.74028 -0.73261
4.4 -0.78821 =0.72574 -0.78928 -0.79800 ~0.79446
4.6 -0.84362 -0.78623 -0.80583 -0.82264 -0.82407
4.8 -0.86746 -0.81785 -0.78760 -0.81364 -0.82069
5.0 -0.85849 -0.81988 -0.73571 -0.77179 -0.78490
5.2 -0.81682 -0.79266 -0.65317 ~0.69920 -0.71852
5.4 -0.74u409 -0,73757 -0.54464 -0.59917 -0.62u456
5.6 -0.64352 -0.65697 -0.41585 -0.47611 -0.50704
5.8 -0.51967 -0.55405 -0.27311 -0.33525 -0.37080
6.0 -0.37816 -0.43279 -0.12272 -0.18253 -0.22172
6.2 -0.22516 -0.29772 0.02937 =0.02427 -0.06554
6.4 -0.06694 -0.15382 0.17767 0.13305 0.09140
6.6 0.09056 -0,0063 0.31714 0.28307 0.24251
6.8 0.258192 0.13957 0.u4u298 0.41977 0.38308
7.0 0.38242 0.27867 0.55061 0.53776 0.50650
7.2 0.50795 0.40617 0.63563 0.63247 0.60850
7.4 0.61u493 0.51774 0.69408 0.70029 0.68527
7.6 0.70017 0.60967 0.72786 0.73878 0.73407
7.8 0.76090 0.67898 0.72020 0.74667 0.75327
8.0 0.79476 0.72355 0.68609 0.72400 0.74234
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Table 4. Comparison ofgnssults for F, Showing Effects of the Correction
Variable (K) - (Fy = 0, F," =1, Fp =0, F,' 20,6, 20,6, =0,
Gy = 0, Gg' = 0) - Stable Case (n = 40) - Standing Waves

ey P L

B & el L e A )

gm
i= i= i=0
K= K= K=20

Exact Perturbation| Exact Perturbation Analytic

Solution Solution Solution Solution Solution
0.2 0.00011 -0,00400 0.00015 =-0.00419 -0.00192
0.4 0.00099 ~-0.00996 0.00136 =-0.01035 =-0.00696
0.6 0.00354 -0.01599 0.00u479 -0.01597 -0.01337
0.8 0.00860 =0.02013 0.01141 -0.01856 -0.01885
1.0 0.01665 =-0.02071 0.02149 -0.01626 -0.02113
1.2 0.02761 -0.01669 0.03uu43 -0,00838 -0.01856
1.4 0.04072 -0.00793 0.0u4866 0.00438 -0.01059
1.6 0.05u458 0.00u479 0.06180 0.01995 0.00208
1.8 0.06726 0.01983 0.07113 0.03529 0.01748
2.0 0.07663 0.03491 0.07416 0.04696 0.03278
2.2 0.08072 0.04750 0.06910 0.05185 0.0uu72
2.4 0.07803 0.05521 0.05549 0.04783 0.05038
2.8 0.06793 0.05622 0.03439 0.03u68 0.04776
2.8 0.05081 0.04957 0.00841 0.01343 0.03626
3.0 0.02816 0.03542 -0.01867 -0.01282 0.01687
3.2 0.00244 0.01507 -0.0u4246 -0.03978 -0.00745
3.4 -0.02323 -0.009817 -0.05871 -0.06265 -0.03313
3.6 -0.0u54y -0.03425 -0.06410 -0.07695 ~-0.05561
3.8 -0.06099 -0.05679 -0.05687 -0.07938 -0.070867
4.0 ~-0.06735 -0.07356 -0.03727 ~0,06854 -0.07507
4,2 -0.086307 -0.08196 -0.00764 -0.04530 -0.06722
b.4 -0.04802 -0.08040 0.02778 -0.01278 -0,04759
4,8 -0.02355 -0.06854 0.06351 0.02408 ~-0.01872
4.8 0.007867 -0.04745 0.09363 0.05926 0.01509
5.0 0.0u4187 -0.01945 0.11279 0.08668 0.04845
5.2 0.07470 0.01210 0.11719 0.10127 0.07573
5.4 0.10173 0.04330 0.10529 0.09987 0.0920¢t
5.6 0.11915 0.07013 0.07824 0.08191 0.09414
5.8 0.12425 0.08905 0.03976 0.04959 0.08095
6.0 0.11586 0.09745 -0.00434 0.00764 0.05385
6.2 0.09462 0.09402 -0.04711 -0.03736 0.01700
6.4 0.06286 0.07894 ~-0.08154 -0.07807 -0.,02u424
6.6 0.02438 0.05389 -0.10178 -0.10757 -0.06318
6.8 -0.01630 0.02182 -0.10u409 -0.12058 -0.09336
7.0 -0,05322 -0.01335 -0.08754 -0.11433 -0.10952
7.2 -0,08237 -0.04728 -0.05423 -0.08921 -0.10854
7.4 -0.09956 -0.07576 -0.00908 -0.04879 -0.09001
7.6 -0.10237 -0,09523 0.0u4092 0.00093 -0.05639
7.8 -0.09018 -0.10322 0.08777 0.05190 -0.01267
8.0 -0.06428 -0.09872 0.12375 0.09586 0.0343u
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In Table§ S and 6, a comparison of results are presented for modal
amplitudes P1 and F2 foQ'an unstable standing wave showing the effect of
neglecting gas-dynamic nonlinearities. It can be seen that the gas
dynamic nonlinearities have little qualitative effect on the results.

In Tables 7 and 8, a comparison of results are presented for modal
amplitudes Fq and P2 for an unstable standing wave case showing the effects
of K. The results for zero and non-zero are qualitatively similar. |

These tables are representative of the cases that were investigated
in the course of this research. Only cases involving standing waves were
presented. The same behavior, however, can be observed for the cases
involving traveling waves.

In Table 9, a comparison of stability boundaries is presented
based upon the interaction index (n) which is a measure of the strength
of the combustion process. For standing waves and the given conditions
shown, the stability limit for a process with gas dynamic nonlinearities
considered and K = 0 is between 45-50. When both gas dynamic non-
linearities and the correction variable are considered, the stability
limit is increased to 67.5-69. Finally, when considering only the
correction variable with no gas-dynamic non-linearity effect, the stability
limit is 72-72.5. The results show that the neglect of gas dynamic
non linearities siightly underestimates the stability boundary and that
the increasing K increases the stability limit.

In Table 10, a comparison of stability boundaries is presented
based upon the interaction index for traveling waves. These results provide
additional confirmation of the conclusions discussed in the previous
paragraph and also illustrate the fact that standing waves are roughly

twice as stable as traveling waves. This is consistent with the

s
i
i
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Table 5. Comparison of ﬁnsults for Fq Showing Effect of the Gas Dynamic
Index (1) - (Fy =0, Fy'! =1, Fp =0, F)' =0,6 =0.6,'=0,6,=0,

Gy' = 0) - Unstable Case (n = 75) - Standing Waves

i=1 1=0
K=1 K=1

t Exact Perturbation Exact Perturbation

Solution Solution Solution Solution
0.2 0.19699 0.18717 0.19699 0.18703
0.4 0.38335 0.38215 0.38336 0.36402
0.6 0.55250 0.52613 0.55258 0.52513
0.8 0.69847 0.69244 0.69881 0.66518
1.0 0.81592 0.80625 0.81700 0.77974
1.2 0.90030 0.86736 0.90294 0.86535
1.4 0.9u4803 0.92126 0.95337 0.91952
1.6 0.95671 0.94184 0.96695 0.94089
1.8 0.92557 0.92873 0.9u4003 0.92921
2.0 0.85572 0.88276 0.87584 0.88529
2.2 0.75039 0.80579 0.77580 0.81106
2.4 0.6148u 0.70079 0.6u4411 0.70941
2.6 0.45593 0.57161 0.48677 0.58410
2.8 0.28147 0.42287 0.31118 0.43963
3.0 0.09945 0.25987 0.12554 0.28107
3.2 -0.08272 0.08829 -0.06194 0.11388
3.4 -0,25864 =-0.08588 ~0,2u4371 -0.05620
3.6 -0.42307 -0.25669 -0.41342 =0,22350
3.8 -0.57177 -0.41827 -0.56608 -0.382u41
4,0 =0.70107 -0.56512 -0.69790 -0.52773
4,2 -0.80745 -0.69228 -0.80594 -0.63473
[ -0.88721 =0.79547 -0.88767 «0.75934
4,6 -0.93641 -0.87123 -0.9u056 -0.83825
4,8 -0.85124 -0,91703 -0.96203 -0.88902
5.0 -0.92862 -0.93138 -0,94961 ~-0,91020
5.2 -0.86710 -0.91381 -0.901u6 -0.90121
S.u4 -0.76771 =-0.86u92 ~0.81711 -0,.86255
5.6 -0.63434 -0.78635 -0.69815 =0.79563
5.8 =0.47368 -0.68071 -0.5u872 ~0.70274
6.0 -0.29439 ~-0.55149 ~0.37551 -0.58703
6.2 -0.10588 =0,40299 -0.18717 -0.45231
6.4 0.08258 -0.22558 0.00672 -0.30299
6.6 0.26374 ~-0.06815 0.19691 -0.14391
6.8 0.43198 0.10715 0.37555 0.01979
7.0 0.58355 0.28009 0.53682 0.18290
7.2 0,71613 0.44478 0.67707 0.34025
T4 0.82779 0.59627 0.79428 0.48686
7.6 0.91635 0.72909 0.88737 0.61813
7.8 0.97878 0.83897 0.95535 0.729%6
8.0 1.01111 0.92224 0.99664 0.81891




Table 6. Comparison of Results for F, Showing Effect of the Gas
Dynamic Index (i) - (Fy = 0, Fy' =1, Fp =0, F,' = 0,6, =0,
G' =0, Gy =0, Gy =0) - Unstable Case - (n = 75) - Standing Waves

— — )
i=1 i=90
K=1 K=1

Exact Perturbation Exact Perturbation

Solution Solution Solution Solution
0.2 0.00013 -0.00548 0.00003 =-0.00316
0.4 0.00124 -0.015u4 0.00054 -0,01172
0.6 0.00473 -0.02691 0.00257 =-0.02333
0.8 0.01210 =-0.03643 0.00752 -0.03484
1.0 0.02443 =-0.0u4077 0.01670 =-0.04288
1.2 0.04197 -0.03749 0.03088 -0.0u4728
i.4 0.06387 -0.025518 0.0499% =-0.03793
1.6 0.08806 -0.005425 0.07263 -0.02258
1.8 0.11143 0.02061 0.0966 0.00033
2.0 0.13027 0.049007 0.1186 0.02813
2.2 0.14082 0.07537 0.13504 0.05686
2.4 0.14005 0.09513 0.14236 0.08237
2.6 0.12628 0.10426 0.13796 0.09995
2.8 0.09967 0.10004 0.12064 0.10606
3.0 0.06242 0.08152 0.09109 0.09851
3.2 0.01860 0.04984 0.05192 0.07688
3.4 -0,.02636 0.008166 0.0076 0.04283
3.6 -0.06636 -0.03858 -0.03628 -0.00096
3.8 -0.09548 -0,.08436 -0.07362 -0,046816
4,0 -0.10889 -0.12285 -0,09877 -0.09134
4,2 =-0.10354 -0.14826 -0.10733 -0,.,12758
4.4 -0.07873 -0.15626 -0.09688 =-0.15016
4.6 -0.03636 -0.14461 -0.06742 -0.15524
4,8 0.01909 -0.11361 -0.02153 =-0,14104
5.0 0.08104 -0.06617 0.03583 -0.10827
5.2 0.141u8 -0.00758 0.09778 -0.06010
5.4 0.19206 0.055118 0.15638 -0.00186
5.0 0.22528 0.11399 0.20358 0.05954
5.8 0.23565 0.16121 0.23235 0.11651
6.0 0.22067 0.19016 0.23779 0.16168
6.2 0.18130 0.19633 0.21796 0.18888
6.4 0.12201 0.17793 0.17434 0.19397
6.6 0.05019 0.13633 0.11182 0.17547
6.8 -0.02u482 0.07595 0.03808 0.13477
7.0 =-0,09302 -0.02526 -0.03737 0.07614
7.2 -0.14503 -0.07144 -0.10448 0.006209
7.4 -0.17338 -0.140235 -0.15u407 -0,06680
7.6 -0.17347 ~0.19368 -0,17900 -0.13401
7.8 -0.14428 -0.22450 ~-0,17519 -0.18700
8.0 -0.08859 -0.22808 -0.14216 -0.21888
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Table 7. Comparison of Results for Fq Showing the Effects of the
Correction Variable (K) - (Fy = 0, Fi' =1, Fp =0, PQ' 20,6y =0,
Gy' =0, Gy =0, G' = 0) - Unstable Cases (n = 70) - Standing Waves

— :

i=21 i=1 i=0 :

K= 1 K=0 K=20 5

t Exact Perturbation Exact Perturbation| Analytic -

Solution Solution Solution Solution Solution i
0.2 0.19699 0.187155 0.19670 0.19687 0.19675
0.4 - 0.38335 0.36462 0.38172 0.38261 0.38217
0.6 0.55251 0.52587 0.5u791 0.55028 0.54942
0.8 0.69850 0.66615 0.68878 0.69371 0.69249
1.0 0.81604 0.78072 0.79865 0.80787 0.80630
1.2 0.90066 0.86596 0.87280 0.88811 0.88696
1.4 0.,9u4887 0.81928 0.90775 0.93226 0.93184
1.6 0.95842 0.93925 0.90166 0.93878 0.93468
1.8 0.92863 0.92554 0.85477 0.90772 0.91061
2.0 0.86067 0.87904 0.76962 0.840€1 0.84612
2.2 0.75771 0.80166 0.65109 0.,7u802 0.74903
2.4 0.62481 0.6%6u8 0.50590 0.61107 0.62333
2.6 0.46860 0.56735 0.34194 0.45807 0.47407
2,8 0.29658 0.41903 0.16733 0.26849 0.30714
3.0 0.11649 0.25679 -0.01027 0.10616 0.12906
3.2 . -0.06441 0.08639 -0.18416 -0.05313 -0.05327
3. -0.23973 -0.08618 -0.3u4860 -0,25962 -0,23280
3.6 -0.40u14 -0.25437 -0.49854 -0.42949 ~-0.40262
3.8 -0.55318 -0.41415 -0,62912 -0.58151 -0,55621
4.0 -0.68301 -0.55829 =-0.73533 -0.70960 ~-0.68766
4,2 -0.78998 -0.68250 -0.81197 -0.80859 -0.79192
4.4 -0.87041 -0.78258 -0,85399 -0.87u49 -0.86494
L.6 -0.,92055 -0.85525 -0.85738 -0.90458 -0.,90388
4.8 -0.93689 -0.89811 =0.82008 -0,.89755 =-0.90718
5.0 -0.91671 -0.90981 -0.74306 -0.85356 =-0,87463
5.2 -0,85886 =-0,89005 =0.63045 ~-0.80213 ~0.80736
S.u -0.76447 -0,83962 -0.48925 -0.6626u4 -0.70785
5.6 =0.63724 ~-0.76029 -0,32818 -0.52309 -0,57982
5.8 -0.48340 -0,.65486 -0.15634 -0.36111 -0.42807
6.0 -0.31100 -0.52691 0.01809 -0,18308 -0.25635
6.2 -0,12888 ~-0.38083 0.18852 -0.076u5 =0.07712
6.4 0.05445 -0.22156 0.34995 0.10764 0.10864
6.6 0.23170 -0.05445 0.49844 0.37422 0.29176
6.8 0.39723 0.11u85 0.63023 0.46032 0.46509
7.0 0.54707 0.28072 0,74089 0.69003 0.62177
7.2 0.678u6 0.u43759 0.82500 0.81052 0.75551
T.4 0.78917 0.58027 0.87632 0.89873 0.86085
7.6 0.87687 0.70394 0.88888 0.95061 0.93330
7.8 0.93868 0.80u457 0.85847 0.96357 0.96962
8.0 0.97109 0.87877 0.78419 0.93647 0.96786




Table 8. Comparison of Results for F, Showing the Effects of the
Correction Variable (K) - (F; = 0, F,' =1, Fp = 0, F,' s 0, 0y = 0,
6' no, Gy » 0, Gp' = 0) -~ Unstable Cases (n = 70) - Standing Waves

.
~ {i=1 i=1 i=0
K=1 K= 0 K=s0
5 t Exact Perturbation Exact Perturbation | Analytic
? Solution Solution Solution Solution Solution
0.2 0.00013 -0.00527 0.00017 =0.00562 =-0.00336
0.4 0.00120 =0,01466 0.00165 -0,01557 -0.01219
0.6 0.00456 «0.0253u 0.00619 -0.02603 =0.02343
0.8 0.01160 -0,03u11 0.01544 -0.03276 «0.03305
1.0 0.02332 -0.03789 0.03024 =-0,03218 =0.03709
E 1.2 0.03992 =0.03451 0.05013 =-0.02232 -0.03264
. 1.4 0.06057 -0.02299 0.07306 -0.01862 -0.01865
3 1.6 0.08330 =0.00396 0.09555 0.021911 0.00367
1.8 0.10517 0.02047 0.11324 0.04915 0.03093
2.0 0.12271 0.04692 0.12170 0.07264 0.05810
2.2 0.13242 0.07126 0.11751 0.08675 0.07947
2.4 0.13150 0.08922 0.09917 -0.087046 0.08978
2.6 0.11839 0.097152 0.06770 0.07141L 0.08535
2.8 0.09328 0.11651 0.02679 0.04063 0.06502
3.0 0.05822 0.07u67 -0.01761 =-0,001408 0.03053
] 3.2 G.01701 0.0uu68 -0.05827 -0.04828 =0.01346
: 3.4 -0.02528 0.005867 ~-0.08789 =-0,09196 =0.0600%
: - 3.6 =0.06295 -0.0377% -0.10041 «0.124286 -0.10122
% 3.8 -0.09049 -0.07994 -0.09221 -0.13827 -0.12919
. 4.0 -0.10337 -0.11504 -0.06290 =0.12986 ~0.,13785
4,2 -0.09872 -0.13779 =-0,01566 =-0,09854 -0,12403
1 b. 4 -0.07590 -0.3442 0.04299 -0.0u4785 -0.08825
% 4,6 -0.03665 -0.13261 0.10404 0.01493 -0,03490
i 4.8 0.01487 =-0,1032 0.15731 0.07988 ~0,02828
5.0 0,07254 =-0.05894 0.19315 0.13602 0.09131
5.2 0.12595 -0.00478 0.20u24 0.17311 0.1u387
5.4 0.17637 0.05266 0.18706 0.183575 0.17558
5.6 0.20783 0.10617 0.147284 0.163922 0.18070
L 5.8 0.21824 0.14862 0.07764 0.11562 0.156u40
E 6.0 0.20519 0.17409 0.00147 0.04509 0.10u49%
! 6.2 0.16949 9.17865 -0.0733 -0.03703 0.03331
: 6.4 0.11514 0.16089 -0.13397 -0.11757 -0.04784
6.6 0.0u4883 0.12229 -0.16972 -0.182899 =0.12564
6.8 -0.02090 0.06705 -0,17346 -0.22122 -0.18709
7.0 -0.08483 0.0016% -0.14308 =0,22468 -0,22125
7.2 ~0.13429 -0.06594 -0.08205 -0,19089 =-0,22111
7.4 ~0.16228 -0.12723 0.00095 -0.,12367 -0.18495
7.6 -0.16442 ~0.17433 0.09312 =-0,03255 -0,11630
7.8 -0.13960 -0.20087 0.17949 0,06839 ~0.02652
8.0 -0.08020 -0.21857 0.2u4522 0.1627% 0.07753

|
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Tabls 9. Comparison of Stability Boundaries Based on the Interaction
Index (n) - (F; = 0, Fy' =1, F, 20, F,' 50,6, 20,6, =0,
G, = 0, Gy' = 0) - Standing Waves - Epsilon - 0.1

[ |

Stability Boundaries

Gas Dynamic Index Exact Solution “Perturbation Solution
Correction Variable n = Stable - Unstable n - Stable - Unatable

i=] 67.5 - 69 67.5 - 689

K= 1

i=0 72 - 72.5 72,8 « 73

Ks1

11

K=0 45 - 50 4s - 50
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Table 10. Comparison of Stability Boundaries Based on the Interaction
Ind.x (h) - (Pi B 0, Fl' L -1’ P: 2 0, Pz' L °| 61 = 1' Gz' L 0'
Gy = 0, G,' = 0) - Traveling Waves - Epsilon - 0."

Stability Boundaries

Gas Dynamic Index Exact Solution Perturbation Solution
Correction Variable n - Stable - Unstable n - Stable - Unstable

i=)

Kei 7.5 - 28 31,5 - 32

i=0

Ks1l 30 - 21 36.35 - 36.5

i1

Krco 25 - 30 25-30




approximate an;lytical stability equations (4.31) and (4.52). The

- perturbation method tends to predict slightly higher stability limits
than the exact solution method for both standing and traveling waves.
Within the accuracy of the tabulated values, this is apparent only in

the first two rows of Table 10.

In Table 11, a comparison of the effect of different initial
conditions imposed on the stability boundaries for both standing and
traveling waves is presented. From the results of two sets of initial
conditions for each case, it can be seen that the varying of initial
conditions has no significant effect on the stability boundaries for
both standing waves or traveling waves.

In Table 12, the variation of the stability limit with ¢ is
presented for standing waves. From Table 12, the results show that the
smaller the term epsilon the greater the stability limit. Therefore,
the order term has a significant effect on the interaction index. In
Chapter 4, a relation was proposed for the case of i = 0 and K= 0
which was n = C/ec where C is a constant. Assuming the validity of the
relation, the values for this constant are given for each given epsilon
and interaction index. This shows that, in general, C is a weak function
of e.

In Table 13, a comparison of the effect of ¢ is presented for
traveling waves when both gas dynamic nonlinearities and correction
variables are considered. Again, the results show that the smaller the
term epsilon, the greater the stability limit. The perturbation method
again predicts slightly greater stability limits than does the exact

solution method. Therefore, again, the order term has a strong effect

concerning the stability of combustion.
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Table 11. Comparison of the Effect of Different Initial Conditions

Imposed for Standing and Traveling Waves for i =

Epsilon = 0.1

(a) Standing Waves - 1.

2.

Fq=0,F' =1, F=0

Gy =0,6," =0,6y=20
'

Fy=1,F 20,F=0

Gy =0,6,'=0,G6,=0

p———

1and X = 1

» Fp'
’Gz' =°

» Pg' =
»Gy' =0

e ———

—

Stability Boundaries

Initial Condition

Exact Solution

~ Perturbation Solution

Sets n - Stable - Unstable n - Stable - Unstable
1. 67.5 - 69 67.5 - 69
2. 65 - 70 65 - 70
(b) Traveling Waves - 1. Fy =0, Fy' = -1, F, =0, Fp' =0
Gy =1,6'=0, 6=0,6 =
2. Fy=1,F"'=0,F=0,F' =0
Gy =0,6'=-1,6,=0,G) =0

Stability Boundaries

Initial Condition

Exact Solution

Perturbation Solution

Sets n - Stable - Unstable n - Stable - Unstable
1. 27.5 - 28 31.5 - 32
2. 27.5 - 28.5 31 - 31.5

P
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Table 12. Comparison of the Effects of the Order Term Epsilon -
(Fy =0, F' =1, Fp=0,F) =0,6,=0,6"'=0,6 =0,
G,' = 0) - Standing Waves - when { = 1, K = 1
Stability Boundaries
Exact Solution Perturbation Solution Constant
Epsilon n - Stable - Unstable n - Stable - Unstable C = ne
0.1 67.5 - 69 67.5 - 69 6.9
0.2 48.5 - 49,5 48.5 - 49.5 9.8
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Thus, from these representative tables of results, it is observed

that the correction variable is important in the stability of standing

waves, but does not play a major role in the stability of traveling
It is observed that the gas dynamic nonlinearities seem to have lit

influence on the stability of either standing or traveling waves. I

waves.

tle

t

is observed that initial conditions of the modal amplitudes have little

or no influence in the stability of either standing or traveling waves.

And finally, it is observed that the order term epsilon and, the inter-

action index governing the strength of combustion in the process are
strongly coupled thus affecting the limits of stability.

Before completing this chapter, it is desired to investigate

the

sign discrepency mentioned previously between the exact and perturbation

solutions for f which occur near t = 0. For simplicity, it will be

assumed that i = K= 0 and that for t << 1 the first modal amplitude

be represented with sufficient accuracy by f1 = sint. Then, the
equation for f2 will be solved and the result simplified for t << 1.
This will be done first for = 0 and then for w # 0. For w = 0,

(3.21) leads to

d%f

—ldtz + u,f2 =¥ ewn [1 - cos2t]

with initial conditions

1}
(=]

£,(0) =

1

f2 (0,

1]
o
-

can

(5.1)
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Evaluating the homogeneous and particular solutions by the usual manner

and evaluating the constants, the results become

I - -
£, = 15 eun [1 cos2t - t sin2t] . (5.2)

In terms of the perturbation parameters (4.1), equation (5.2) can be

written as

wn [e(i - cos2§) - n sin2£] . (5.3)

»n
ey
o

To the order of approximation € which the perturbation solution should

model, equation (5.3) becomes

- 1 - .
f2 = - Ig uon sin2¢ + 0(¢).

(5.4)
By expanding equation (5.2) into a Taylor series expansion of three terms,

equation (5.2) becomes

1 -
f2 =55 ewnt + ... (5.5)

which is always positive.

Therefore, the exact method for small time will yield f2 modal
amplitude always as a positive quantity.

By imposing identical conditions to the perturbation equations

(4.12), the result becomes

T




dB
2.1 =
dn 16
with the condition
BQ(O) = 0,
Solving equation (5.6),
B, = - = &nn (5.7)
2 16 ' *

Recalling that f2 = 82 sin2f, the result becomes

= -1
-1

) wnn sin2f + 0(e)

[N

(5.8)

which is identical to the result of equation (5.4) for the wave equation
solution. Thus, the perturbation method gives the correct result. It
can be seen that for t << 1 the exact solution predicts a positive f2
and by inspection of equation (5.8), the perturbation method predicts a
negative f2. This is precisely the behavior observed in the numerical
solutions.

For w # 0, a similar analysis can be performed. The appropriate

equation for f2 is now

e T + ufz = %ewn[ 1 - coth] (5.9)

T

L
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with conditions )

% f2(0) =0

f2'(0) = 0,

Solving the homogeneous and particular solution by the usual manner and

evaluating the appropriate constants the result becomes

f.ze -w/2t [- i—e cwn cos (3-%:——“1 t‘)

en [8 - @2 . /16 - a2 1
+ — ]sm — 16

t + > cun - % en sin2€}
* (5.10)

Expanding (5.10) for small w into the appropriate Taylor series, expanding

and neglecting terms of 0(w) leads to

_1 - .
f2 = 3¢ tun [} cos2t - t 31n2t] (5.11)

which is identical to (5.2).

By imposing the identical conditions on the perturbation equation

(4.12), the resulting equation become

dB
—2 sg =.1 -
T + % 032 g un (5.12)

with the condition




;
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B,(0) = 0.

Solving equation (5.12) by the usual manner, evaluating the constants,

and transforming the perturbation variables to real time varlables

£, %5-[1 -e 'k“t] sin 2t, (5.13)
This is always negative for t << 1, Expanding the exponential function

by the Taylor series expansion and negle:t terms of o(w) leads to

£, * “T&n sin 26 + 0(e) (5.14)
which is identical to (5,8).

To observe the behavior of equation (5.10) for small time,
expand this equation into a Taylor series of o(t*). Expanding and
grouping terms according to their order of magnitude, the terms of
0(1), 0(t), 0(t2), 0(t3) vanish. Therefore, f2 is comprised of terms

from 0(t%) which is

£ L enwt [1+3w +_w_]

2 24 8 64 (5.15)

Again, for any small time t, f2 is always positive since tu is always
positive. Neglecting higher powers of w, the resulting equation becomes
equation (5.5) for the undamped case. Again it can be seen that the
exact and perturbation methods predict opposite signs for f2 when t << 1,

These results are based on approximations and cannot be considered

"
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definitive. They do, however, lend plausibility to the numerical results
discussed earlier. It is believed that this sign discrepancy is due
to the inability of the perturbation solution to accurately represent
the exact solution for t << 1 and not due to any error .In the computer

program used to compute the perturbation solution.

= im0 .

ot




Chapter 6

CONCLUSION AND RECOMMENDATIONS

The primary objective of this présentation has been the development

of analytical techniques to solve the problem of combustion instabilities

occurring in an annular combustion chamber. The analytical techniques
used were the modified Galerkin method applied to the acocustic wave
equations which yielded a set of time-dependent modal amplitude equations
and the two-variable perturbation method which yield a set of time-
dependent equations which approximated the behavior of the first set of
equations. Both methods produced results which were relatively easy to
apply and used the Runge-Kutta a.gorithm which required little computation
time. An alternative approach to solve this problem would be a finite
difference approach. However, difficulties can be foreseen in the
development of the finite difference equations modelling the problem
along with the complications occurring due to the boundary conditions of
the problem. Thus, the benefits of the methods discussed in this thesis
can be appreciated.

From the numerical and graphical presentation of results in Chapter
5, the following observations can be made. First, the effect of the gas-
dynamic nonlinearities seems to be small in both methods of analysis for
velocity sensitive combustion. This point can be observed from a
quantitative comparison of the tabular results or by observing the effects

of this condition on the stabllity boundaries. Second, the effect of the

111
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correction variable modelling the physical boundaries of the chamber seems
to have a significant effect in both methods of analysis for velocity
sensitive combustion. By including tlie effect of this correction variable,
a significant increase occurs in the interaction index which is the
criteria for the stability of the system. However, this effect sesms to
be more significant for the standing wave case than the traveling wave
cases. The effects of initial conditions for the time dependent equations,
the numerical value for the burning rate and step size of integrationm,
seem to have very little significance in the measure of the stability
limits of velocity sensiti.e combustion. However, the order term epsilon
has a strong effect upon .ne stability of the problem. This is to be
excepted since the order term is the measure of the effect of non-
linearities occurring in the system. The increase in this value corresponds
to a decrease in the stability limit which is physically reascnable.

In this study, the effect of time delay of the combustion procest
was nezlected. However, time delay has been found in other studies to
be an important phenomena in correctly modelling tie actual problems of
velocity sensitive combustion. It is recommended that this effect can
be incorporated by including the corresponding terms with § = 1 in the
acoustic wave equations (3.20). A corresponding set of perturbations can
then be derived to account for time delay and both these equations and
equations (3.20) can be numerically evaluated by modifing the existing
Runge-Kutta programs presented in the Appendices. It is also recommended
that an experimental program be developed to measure the effects of
velocity sensitive combustion in an annular combustion chamber. Once
achieving this goal, one could correlate the measurement results to the
analytical results that have been presented to ascertain the validity of

this analysis.
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Since inatability of combustion is sensitive to small changes in
engine geometry and opcriting conditions, a perticular engine must be
subjected to a large number of firings before its designers can say
confidently that it is free from instability. With a large engine such

testing can account for a substantial part of development costs. Herein
lies the importance of devising rclilbl; theories of instability and
inexpensive tests of a propellant's acoustical characteristics. Until
instability of combustion is understood well enough so that it can be
eliminated while an engine is in the design stage, rocket engines must
continue to be intensively tested for stebility--particularly when

the lives of astronauts will eventually depend on safe, reliable

operation of the engine [17].
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- APPENDIX A

GENERAL TIME DELAY FUNCTION
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GENERAL TIME DELAY FUNCTION
The development and nature of the time-delay function is of the

same form of the convolution integral for impulse response in vibration

theory. The general form of the time délay function is

t du,
w(t) = I J(t - §) EE"dE . (A.1)
0

A simple illustration of the time delay function is in the case of a

finite step function J(t).
J(t)

1

T
(some specific time constant)

Figure Al. Step Function J(t)
From the figure, the step function J(t) is defined as

1 t<+1
J(t) =
0O t>1 (A.2)

Therefore, substituting some time delay (t - £) for time t, the result is

119
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f\.
l t-§<n
J(t - g) =
0 t-E<1
or
1l t -‘1 < g
J(t - §) =
0 t-t>1 , (A.3)
Graphically representing equation (A.2) results in Figure A2.
J(t - €)
|| P —_—
0 t-& t ¢
Fig.re A2, Step Time Delay Function J(t - &)
Substituting into the general time-delay integral the particular step
function in terms of the non-dimensional variable &
t -1 dwo t dwo
w(t)=J 0 —— dg ] 1—4¢ ,
dé dé (A.4)
0 t-t '
Therefore, simplifying equation (A.3)
w(t) = wy(t) - wo(t - 1) (A.5)

where wo(t) is a generalized function of time and wo(t - 1) is

functional time delay.
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APPENDIX B

RUNGE-KUTTA PROGRAM OF THE MODAL

AMPLITUDE WAVE EQUATIONS
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10lZ/Z.;FQ?OUZI2.»GIP*VZIZ.DGZP0HZIZ.)

;3=H'§2(T0H/2.nFlOPZ/2.9F34Q2/Z.:Gl032/2--320SZ/Z-»FIP

lOIZIZ.OFZPOUBI?.oGIPOVB/?.»G!P‘HZI!.)

43=d'€S(T0le.oFIOPZIZ.pFZOJJ/Z.:G&ORZ/Z..GZO52/3opF1P

lOI?/Z.»F?POU3/2.15190JZ/l.oGZPﬁwZIE.)

$3=4'E4(T‘H/?ooFl*PEIZ.oFZOQ?/Z.DGIOQZIE-DGZ‘32/2-»’1?

lv72/2.072P0U?/ZonGlPOVZ/Z.vﬁzPOWQIZo)

TS=H'£$(?*H/Z.rFl'°2/2.:FZ‘02/20051452/200620SZIZ.oFlP

10l?/?-of?Pibllf.’GIPOVZIZ.vGZP‘nZIZ.)

0334'55(7'413.pFXOPBIZ.ofzﬁQZ/ZovGIOQZ/Z.;SZOSZ/Z.»FI”

10lZlfofF?P'UZ/Z.:GXPOVZ/Z-oGZPONZIeo)

lS’W'ETKTvHIZooFlOPZIZ.'72032/3.0510Q2/2.n530SZ/B.;FIP
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LeT272,0F204U2/7240GIP4V2/245»G2P9H2/2,)
AJ=HeEB(TeH/2esFLleP2/24sF2402/240G14R2/2.9G2252/249F1P
107272,,F2P4U2/2.5G1P4V2/24»G2P+4d2/24)

PUad e l(TeH,FLeP3,F2433,G1¢83,G2453+F1PeT3F2040u3,51P
F 14v3,32P¢4u3)
: CUsHE2(ToHI)FLeP3,F2403,GLIRS3,G24S53sF 124 T3,F2PeUS,GLP
E 14v3s52P443) ’

RUesHeE3CTe 4 oFLeP 3 F2453,G1¢R3»52¢53,71P¢T 3sF2P+U3,G12
1¢¢3,32P¢NW3)
34xrieCu(TeHoFLeP3pF24)3»GLeR3,G2453,F124T73,F2P¢ U312
14v3,52P8¢43)

TUsHeZS(TeH FL4P 3»F24233,01¢R3+52+453»78P¢T3,F2724U3,619
1ev3s352P+43)
UhaHeZh(TaHsFL4P3,F2¢03,014R3,52¢83,F19¢4T30F20¢U3»G512
1+v3,32944d3)
VOsHeZT(ToHIFL 4P 3 F2433,5314R 356245357 1P+ T3»F2P443,0612
1443, 32P¢43)
ALsHeCE(TeHF1L+P3,F2433,G1473,532+453»71PaT 3rF22¢13»G17
1¢443,32P+ad)

Flafle((2Le2,2P72¢2,¢234P4)/6,)
FE3720((2142.202¢2,4Q03034)/45,.)
12014 (Fle2.#R242,0R854p4)7/35,)
3233240(5102.23242.733454)/76.)
FI1ozF1P4((T142,2T7242,4T3¢T4)3/5.)
FeRP2F20e((ULl42.0U24¢2,+y3eUb)/8,.)
GlPz iPe(( V142,022, 0 73¢94)/B0)
387223224 ( (W2, vh2e 2 e ndedb) /)

AC213=F12¢EPSa(=Flef2=51i032¢2.5¢(G1%032P4F1PaF27))
ACP 2327234 235¢(=0,25¢(ilwGl1="1#F1)e0,250(FlPef]P=G1P
1¢(3P))
ACP3a=G12¢EPSa(=F12G2eF2051¢),5¢(F1lP*52P=(G1lR#¢72P))
ACPL=x=3224088( 5471 #3140,5¢F1°231P)

TaTeo
L=i+1}
IF (L «E3. 3) 39 1) L9
30T 10
110 ARITS (5050) ToF1oF2,300325A0P12ACP2,40P30ACPY
56 FLAMAT (1XoF Yo o3XoFl a0 2XoF12a53Xo Fl)e592XsF13e505X
FoFi0e302XoF 123034 sCL10e502X2F1063)
L=l
1945 CCNTINUE
caLL EXIY
END

o

H
£
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RUNGE-KUTTA PROGRAM OF THE
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5 s

Gasy 4 ﬁC?OH&LD QbN‘LXNEAi COM3USTION ZATICON; DERIVE)
F334 THE
TAd=yARIABLE PERTURAATION 42T4D)

GOVERNING E3UATIONS=CASZ = NO TImME OSLAY (J=D)

EL0Toalr31oA2,32,A3533500,8408(=0505]1330A1°0,52¢231
1o°C.Se (Al wd 350313344202 4e32034)=0,5eN0qd3A0(31ead"21
2eETe32a00" 42034 ) )0 EPS

EZCToA1s31,42,320235335A4034)3(=0:5¢51G323140.30xm)
1=2deeleCAl #3331 aa =0 e32eA2¢30) =) 5 NenARNR(ALOAS431
2053042020032034))02P§

CI(THralr31242,32,43,533000,30)8020,5083153042=0,5eK*32
1=deSol oAl edbe 31 034222023292033)2;,5eN0dFARM(ANRI]eA)
2#ELea2¢337 43432 ) )0 385

EQCTral1o31502,32,43,33006,36)8(=20,50513308240,5%x032
1=le30le(lanalabedlealed2ea2ell)e) T iad3aARe(ALerb 9]
2¢86"42%A3"32233))eEPS

CE(ToAlr31 042,32,43,538,544530)2(=0s5"5133003"00qe3]
1=5el1230f 0820823203203 03 o\ 1wl 20, 125003 RN ]3]
2=A2¢32))eZP§

ZECT o103 9020325035335 80,530)(=)e525]1332830bo0xm33
1900280 02203241 e31)=0,N6250d 3 ReNe (8200232032110}
2¢Ele21))ecPs

TTCTs81031 2825329435330 000304)3(=0a5053]153004"0,0K234
120e250l0(3103201002)20,0290d34F 0N (Al ed2e29030))eR]

£23(Toals31082,32,5403,33044,30)2(=DdeU05]033 03 4eb 0034
e Ge2501 00320000 22¢31)40,1250d3ARaNe(210A2"31032))0EP3

SIMENSICY FLISND)eF2(530)0h1(300),32(537)
P4l KpNej

Ls}

Tsn,

BEAY I9IT1AL CIVITTIONS AND CONSTANTS

£25«25DC2 TEaM (cPSILOV)

wdAw=STZADY STATE SUANTING RATZ

AINTERACTION INQEX

Re2IRFESTINN VARTAJLE (BAFFLIS,4ALL LININGSPNO2ZLES
p2T2)

12345 OYMAYIC IvNJeEx

M o3L0oA2,32,43,335 800 30=M0040L AMPLITUIES CISFFICTIENTS

BEAD (Sel1)) widAFsNe Ko NMAXLEP 3]
12 FOFvAL (3510.4015,2F10e4)

READ (95,12) Aled1s420320430380 000350
12 FC*4AT (3F12.4)

§24a7 HTEP S12¢Z .
DUCIBILITY OF THE

ORIGINAL PAGE IS POOR

T
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RI4D (S.l6) M
16 FCevAT (F10.9%)
$133aw3pi/cERs
aRITS (6020) 31G3rad3A5oNsKoHIEPSH]
20 FCRYAT C1XobX,?SICMA BARYSFLO4b0 /ol Xo o Xo ' STERDY STATS
L O3LRYING ATE=(UBAR) ' o7 10ebs/ s lXsbX» " INTZRACTION INDCX
2=(NY ) F10e 00/ 1 X0k Xo® COVRECTIIN VARTSAALESCK) *oF 104407 .
S3olXolXo*STEP SIZE=CH) ' »FIleln /o 1XsaXo 'EPSILONCEPS)? o
4oFl0oba/olXobXo* A5 DYNAMIC INBEX=CI)*sF10eke /)
ARITE (603C) 41,31,02,32,43,33504,34 S
50 FOmrMAT (UXo'INITIAL COMOITIONS ' »//01KsdXo ALY pF10ebodX
1"31'oFtDobolol!ohxo'&2'9?10.6p5!:'32':‘10.6:/:!!&#!
20'33'OFiJoﬁtﬁx"33'0:100501r11tﬁ‘o'lﬁ'vFlO.ﬁpSXa'Sﬁ'
3sFL2at0t?) .
ARITS (5040 ,
L3 FCRAAD (ﬁxp‘!o'flﬁi‘s?ﬁe'll'o9!&'31'9&2!0952’91130'32'
Lol iXota3% 11Xs33%,10Xs 46,1 Cx,%2010,7) :

H
H
j

BLNGE SUTTA ALSIA] Tan

BC 130 4 = lyvway

(2] oOn

Pla4eg1(T,AL1031032,32,43033024,34)
L4022 T2al,3L082+,32,43,33030054)
RisH4eE3(T A1,31542,32,23532,44,34)
3134024607021 0491522082,43038540,134)
TlasdoZ5(Toalodlra2,320435,33,544,34)
ULsreZo(T,41,31042032,8803300%034)
V1s4e T T,A00231042,8204%,93514530)
WlaHeZAlTo 01031002032, 43,33520224)

PLadez i (Te /200 00¢P8/2,538050/720,02¢530/72090320310724048
1eT1/72403360L,1/72.00400V17 253408172}

Ses e 2UTor/2an ALOPL/ e 00031 £2.542031/2453205172.003
011720033001 /7200200 080 22.0340d172,)

REs 40T (To /0o NL0PL/2 s 31001 /7200A20FR1/2,032¢3372.4543
10T1/7200B3¢ U/ 20rAGaYLl2,0344040724) '
32sHOCL(ToaH/2,5 31 ePL/2,,31000/20002¢81/2,5R3243172.0A3
1032/!-0330Uil:’.‘.n\‘nﬂl?uahltlz-) -

T2m 10 5CTerd/2.0A1023/ 2,03 000 /2003820%8/2 0042458722043
LeTLl/ 200330172, 0A6001/2.03004172.)

U240l o To H 200 AL OPL/ 2 0L oRt /0o AR243072,,32058 /2,043
Lell/72.0380 ULZ2.0A4eV 1 /2003040t 2:)
128dt£7(r4nl?.ptlcP!IE.0314Qll!.oilQﬁ!l?.llE‘SIJZ-vlS
1‘ “12-0330‘J'./;’.o.\éﬂfl/‘t?.:ih‘dll?.}
d¢=H'€é(f'ﬂli.oAloPlIQ.oSIOQlIZ.-AZOﬁlIZ.vQZ‘31/2-;&3
LeTi/200330U1/2 0000048/ 2.,800¢4172.)

PIodeal(Ted/2 ) A1eP2/2,081002/20042¢72/20032052/20543
S9T2/ 2003300272, 0000027 2.034042/72,)
CS‘H'iZ(‘OHIZ.;i149212.r31‘03/3-tA?032/2-032052/!oaA3
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1002/7240330U2/72.0040V273,,30082/72,)
i!;ﬁ'iS(tcHIZ.:a10PZI?.:81¢0£12.oA206212.'326SZ!Z-:I!
1072/ 24033402720 000¥272,,34e%2/2,)
sssa-is(r¢a12.,at«9212..3103213..ne¢a21z..geosz/z..as
10I212-33S'¥212-o&501212.p36‘n212~) ,
rs:a-&sxtonrr..t:ope:a.aaxoaziz..azoazzz..szosz/z..nx
%07212-0330UZI:.:&GOVZIZ.oiboﬁZIZ.)
53-H156(rﬂﬂlz.olt0?2!2.»83‘3212.»&2062/2.;52¢SZIE.vA!
1412720330 U2/72.0069¥2/2,030444272.)
vs-H'EI(IOle.-A10P212.c33¢02/2.-&2082/2..32-sZI!.-AB
107272403300 2/2.0064¥272,0844a2/2,)
i!lﬂ'istftﬂlz.-11¢P2/3.'8100212.oA!¢5212cu32052/!.a13
1072724533002/ % 0060 02/2.0B0 04272,

: PGlH'iZ(T'Holl'PSaQS‘QSOﬁZ‘F‘»QZQS!oAS‘T3i13003015013
S o : . legee 43
o - 35‘3'£2(T'H953093:i1093032053032053:\3OT3P33!U3!&50v3
B i Logb+d})
Shzde I (TonsaloP3o1e030A2402,32033,03073,3%0530040y3
1s3404d3)
AR AN SN o H AP 3314093, 22088,32053,83473,33¢U3,840v3
L1284en}) )
T"H'is(T'HOiI‘PSoal'QSO12‘ﬁ3'33'530Q3¢VS'QS‘UEDIBOUS
1,30¢43) -
vL=HOES(70Hvli‘?3)3!0J39130;3063053al30730330q!ol¢0V3
11 35+4))
Jeade T ToH,)010P3,31¢03022053032¢53023673+330y35460v3
1rd%eni)
- 45¢H’£3(T03051'95051’Q35l!‘ﬁ3033‘550‘3‘f3033‘03p350{3
E L2303

Alaale((Pl a2 ,02202,eP3e04 /35, )
32l (0102,07242.073¢0041/6,)
A23320 (142,03 202, ¢%3054)73,)
22320 (2142.05242,483¢54)74.)
l!i%!'((ﬂv?.lTZOZ-'YNNHS.)
B3I 5e (Ul +2,00%2,0030U0)75, 3
Vbalbo (VL2 ,0y2e2, 09200l )/8,)
3 Jhe((dle?2 20202, 04804k)/6,)

e
£

IsTe4

FLOJY®ALeTOSCT)e 3 eSIN(T)
G1CJ)=A200D5¢(T)0320514(T)
FICaYsA5e2NS(2.0T)e33e8IN(2.e 1)
G aa0eZ 0302, 0T)02005]%(2e0T)

Lol
: IF (L <530 3) 39 70 112
; W1
3 118 #FITE (%e53) ToAlodled2,32043038,40034




53 FLOYMAT (1XoF 2040 IXpF104522X0F 10433 %95122552X5F10.503X

1oF134502XsF10.303X0F1045+2X5F10.5)
L=1

+ 20 CONTINGE

L=l
T=)

ARITZ (3,41) )
Ll FIRAAT (1XaZ//5 1Ko 3Xs *TIME 5 )Xo *FLO L OXsF20511%X00G10

1o12X5G2%, /)

S8 2:0 J = 1aNvAX
T=Te

HEJRL D

IF (L .53, 3) 53 T3 210
3l T2 29

213 ARITI (30300) TeFLlUOI»F2C3)r31€d)032CL)

¢

LE RN (UXpF2al s 3XoF10e502Xs7 1055 3XsF10.552XsF1945)
L=t

SCHTINLE

CALL Ev1T
£8d

»
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PROGRAM FOR EXACT SOLUTION OF

STANDING WAVE CASE
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Gamy i vCOQNALD
ANALYTIC SOLUTION=STANDING WAVE CAST
JI4E4SIAN F1(320),F2¢(S500)
A123.1415225
H2de
Xe=0el
N¥ax=500
EF3=).1
W3AR=0.1
L=1

SEAD IN GAS DYNAMIC INDEX AND INTERACTIIN INOEX

FEAD (555) 1»XN
S FOA44aT (I5,F1C.5)

INITIAL CONDITIONS

FEAY (5,10) Cl,03,PHILSPHES
10 FOFMAT (4F17.4)

ARITZ (50135) 1
15 FCAMAT (1xs'Gas DYNAMIC INDEX'.15)
ARITZ (5»15) XN
16 FORMAT (IX» 'INTERACTION INDEX'»FTe25/77)
ASITZ (5,29) C1,C3,P4I1,PHIZ
25 FCOARMAT C(1X,t 1ITIAL CONDITIONG'»> /761X 48X "2 L »F )44/
Lo 1Xo&Xo 230 pF10abr/olXotaXp Pl sFLl0aiary s 1Kol XptPr]3e
ZPFlgok’/)
AFITE (5932)
30 FCZAMAT (1Xo2Xs'TIMEY» LOGX» AL »13X»"A3%513X»"317,12X
1,023,154, C1,12X,'C3 %, 11X, "PHIL'»10X»'"PHI3'»/)

23 138 J = 1,444aX

KuzKJ4E®S

iF (XN oE‘-]c )ooANDo l QEQO 1) GD TJ 6\)
IF (XN o7} “OQ.ANDQ I «£3. 2) Gl r14d 59

NC 3A3 DYNAAICS

S5 <iNTINLE
Ro=lad
S=( 6353358 XY RTPIN( =L )nny)
T2le=2XP(=0e5%nBARYX])
UsoeT
vsle /005CY)
ASTXP(=0aSEen3ARCKY)
Clzdey
2=(SINCUIZCNSCUY)
Clz(Ww/ 243230602
Prli=PHIL




[
hY

PHI 322 #PHIL=( (P eRI41. /2. 1eP]
33 T3 290 ;

NG CO¥3USTION

[y N g NS

6y CONTINLE : ’
Re=2,
SS=(ZPS*(~1la)xej)/(2,24385)"
CT=1le=R42(=0.5«n38R*xY)
CL=CSeCT
U2, 7(ZXPICUICLLZEXP(CU))
CaziAP(=d.3*n3aARexy) K
Cl=CAdsCy |
CI=(EXP(UI=L/7ZXP(CUI)ZCEXPCCUI«La/2XPCCUD)
Si=2(Za/2.)2C2
PRI1=PHI!
PYI3=2.2253]11=3 44P}
: C CONTINUE
- 1=s21«C35(PHLL)
1=l IN(PHIL)
A1=33«C2S(2HID)
33=C3«SIN(PHIZ)
FLCJ)=A1#CQS(XJ)e31eSIN(XD)
. F2(4)=a3«205(2 a7 KJ)4332SINC2.0XY)
P 17 (L 483« 2) 33 T0Q 349
: LaL+}
a3 T3 19l
SN0 TI4ZT=4d
ARITZ (3e5002) TIMErA1»A3,31+33,C01573,P411,2413
SO3C FLRMAT (IXpF a6 XN oFlaSs 3 of 1050l Xofl0e5s4%XsF10.555X
1oF10e3p3XsF10.304X0sFl0.3546X571)63)
L=1
100 CCONTINUEZ

"~
[
P

“=)‘
L=1
ArlTZ (3,5000)
6303 FORAAT (iXpo 2779 1Xs 3Xs 'TIME ol 2Xp '"FLl ' 15Ks 07 20,7)

8L 3335 = LlsNnax
Xe={JeH
IF (L +E3. 2) 30 T3 729
LzLe¢l
30 T3 302
739 Ti4Z=%XJ
ARITZ (5s70300) TIMESFL(J)»rF2(4)
700C FANVMAT (L1XoF70403XoF10a507X0710e507)
L=1
CONTIANGE
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OO0
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SAFY H 4CRONALD
AMALYTIC SOLLTION-TRAVELLING wdVE CASS
SIMENSIAY FIC¢330),F2(509)»31(8520)»32(59Y)
Pl=3.141592%
H=22.1
x-.-‘{)OO
NMAX=55¢
$FS=l.1
A3dR =27} ,]
L=l

FEAd IV GAS DYNA4IC INDEX AND INTERACTIIN INDZX

RZAY (5,3) Taxy
5 FOF4AT (15,F123.5)

INITIAL CONDITIONS

READ (3»12) AlrA2rA3r Al
16 FLOrMAT (4F1044)
ARITZ (Br13) I
15 FUSMAT (1Xp'525 DYNAMIC TNDEX'HIS)
ARITE (2210) AN
16 FOAVAT (1X, *LUTERACTIIN INDOX'sFPa202/77)
ARITE (5,20) A1,42,503500
26 FCRMAT (IX» ' INITIAL CINOITIONU S »//,51Xs4Xp a1 55 1)0bs/
LolXobXoatA2%sF L atern /o lXrXpt a3 FiCoto/olXrbXot ALY
25F106%0/)
AR1T (39323)
IO FOradT (LlXrbXa 0 TIMEN LUX» A1t »15Xs1A420,15X0048430,17%
1rtab?,/)
sd 133 J = 1,nvax
Ks=XJegP3
IF (XN o226 DeedNDe ' 226 1) GO T 5O
IF (XN Q{QO Zj..&NOQ I .EQ. )’ GQ TJ 53

MO 345 DYNAMICS

50 cCNTINLE
523, 70711225+ XN
T2le=ChkP(=),5%vdAreX]S)
HERTA]
421700504
ASZX2(=ge34d3 2 xX])
Ac=nwy
E3314CYIZC0S(CY)
A4=(H/2.52642) %
33 TY 235

NC CO43USTINW

N il

e ik



o0

(4]

54

200

599
5903

1170

6304

726
7232

39¢

136

CONTINUE

CS=EP3/43AR

CT=slo=EXP(=0,5*w3AR®LY)

CU=C3«CT

Cva2,/70SXP(CUN* L ZEXPICU))
CasZX2(=0,5en3AR2XJ)

Al=CHsCV ‘
C22(ZXP(CUI=L/7SEXP(CU)YZLEXPCCU)eL. 72XP(CYU))
Al=(Cw/2.)0C2

3C T0 299

Bl=z=A2

3Z=4A1

83=2=14

34=43

F1CJ)=A1a23S(XJS)4312a5INCXY)
GlCJ)=zA2«005(XJI432«SIN(XY)
F2CJ)=A3220S5(2.%4J)433«5IN(2.2XJ)
320 J)2A6250S(2, e XJ)4YLaSIN(2.¢X))
IF (L .E3. 2) 30 13 32

LaL+1l

GC TY 173

TitZ=XJ

ARITZ (5553990) TIME,A1,42,A3,A4
FORMAT (IXoF 74 oTXr(4(F12.8035X)))

L=l
SONTINUE

Xe=J.C

L=}

ARITE (555733)

FASAAT (1 Xo 7770 LXp IXp 'TIMI L 2KsF Lt 13Katr2%,1HX0"510
1214X51532%,7) .

09 37C J =2 1,4vAX

XJ=XJeH

IF (L «E2. 2) 30 70 7020

Lstel

30T 399

TIMZ=2XxJ

ARITT (5,7000) TIMEIH,F1CUIsF2¢a)»n0l()»52(3)
FIRAAT (IXpF T olbn X rFLlia3o?Xo7 10a528XsF1)eS5s7TXsF1345)
L=l

CONTInNUE

SALL EX]IT

IND
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ACOUSTIC PRESSURE DERIVATION

To calculate expressions for acoustic pressure, recall squation

(2.48) which stated

-(e%%+k:2(62+2ﬁ-g%+3¢ -%))'

pE=p=e (F.1l)

This equation represents the unsteady state deviations of acoustic

pressure. When expanding equation (F.l) into a Taylor series expansion,

the resulting equation becomes

- -> 2
psp=1l-c¢ %%-+ g? [-E(u2 + 3¢ . 3@) -u %%-+ 3 (%%) ]

. S (F.2)

Recall that the steady state solution was represented in equation (2.35) by

-(3 ) (22)5)
e =/,
When expanding (F.3) into its Taylor series expansion, the result becomes

= oy - ez [48) 2
p'l ‘5* (dZ) e (F.H)

o




]
l -

i R ]

139

where p is the steady state acoustic pressure. Therefore, the difference

ST

in general acoustic pressure and steady state pressure can be expressed
by subtracting equation (F.u4) from (F.2). For this investigation, a

restriction on the velocity potential ¢ was that it was a function of 6

é and t only. In doing this, the pressure difference equation becomes

P-p=-c -1 r[ (31)2 +(%%)2] . (F.5)

Using the same Fourier series axpansion for the velocity potential ¢ as
expressed in equation (3.18), the acoustic pressure difference equation

(F.5) can be expressed in terms of the product of modal amplitudes and

trignometric function in the transverse 8 direction. Substituting the
appropriate forms of equation (3.18) into equation (F.5) and simplyfying,

the resulting pressure difference equaticn become

=

ps. [ (o, 5w
= |- "[“flfz*‘lgz)”’ I &t Td &

E ig_L df dg dg ;f%

| T ! ‘ - £8)) + Nl 572 - oA sin®
it )
T + ¢ kflg1 + % sin20 , (F.6)
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Since the coefficients 1ﬁ equation (F.6) are functions of time only,
these coefficients havogbeon included in the calculations of the program
in Appendix B. Thus, for .ay given angle o, values for the modal

amplitude at any given time range can be calculated therefore determining

the acoustic pressure difference of that desired location.
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