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FOREWORD

This report summarizes a portion of the work done for NASA

Grant NGR 43-003-015. It is the masters research of the first

author, Gary H. McDonald. John Peddieson was the thesis advisor;

M. Ventrice was the principal investigator of the grant.



TABLE OF CONTENTS

Page

LIST OF FIGURES	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . v

LIST OF TABLES	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . vi

LIST OF SYMBOLS	 . . . . viii

Chapter

1.	 INTRODUCTION AND LITERATURE REVIEW 	 .	 . . .	 . . . .	 . . . . .	 1

Historic Studies in the Problems of Combustion Instability 4

Statement of the Problem	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 8

•	 2.	 DERIVATION OF THE GOVERNING ACOUSTIC WAVE EQUATION 	 . . 10

Steady State Solution	 .	 .	 .	 .	 .	 .	 .	 .	 ...	 .	 .	 .	 .	 .	 . 18

Deviations from Steady State	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 . .	 20

3.	 DERIVATION OF WAVE EQUATION BASED UPON AN ANNULAR COMBUSTION
CHAMBER.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 25

4.	 TWO VARIABLE PERTURBATION METHOD APPLIED TO THE ACOUSTIC
WAVE EQUATION	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 36

S.	 DISCUSSION AND PRESENTATION OF RESULTS	 . . . .	 .	 . .	 . . .	 75

6.	 CONCLUSIONS AND RECOMMENDATIONS .	 .	 .	 . .	 . .	 .	 .	 .	 .	 .	 .	 . . 111

REFERENCES.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . . 115

APPENDICES

A.	 GENERAL TIME DELAY FUNCTION .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . . 119

B.	 RUNGE-KUTTA PROGRAM OF THE MODAL WAVE EQUATIONS . . . . . . . 122

C.	 RUNGE-KUTTA PROGRAM OF THE PERTURBATION EQUATIONS . . . . . . 126

D.	 PROGRAM FOR EXACT SOLUTIONS FOR STANDING WAVE CASE 	 . . . . . 131

E.	 PROGRAM FOR EXACT SOLUTIONS FOR TRAVELING WAVE CASE . . . . . 135

F.	 PRESENTATION OF ACOUSTIC PRESSURE CALCULATIONS. . . . . . .

0

. 138



LIST OF FIGURES

'figure Page

1. Schematic of a Liquid Propellent Combustion Chamber . . . 	 . . . 11

2. Dimensional and Dimensionless Force of a Circular Cylindrical
Combustion Chamber .	 . .	 . .	 . .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 . 25

3. Modal Amplitude F1 vs time t for Standing Waves - Stable Case . 76

4. Modal Amplitude F2 vs time^t for Standing Waves - Stable Case . 77

5. Modal Amplitude Fl vs time t for Traveling Waves - Stable Case. 78

6. Modal Amplitude F2 vs time t for Traveling Waves - Stable Case. 79

7. Modal Amplitude G1 vs time t for Traveling Waves - Stable Case. 80

8. Modal Amplitude G2 vs time t for Traveling Waves - Stable Case._ 81

9. Modal Amplitude Fl vs time t for Standing Waves - Unstable
Case	 .	 .	 .	 . .	 .	 . .	 . .	 . .	 . .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 . 83

10. Modal Amplitude F2 vs time t for Standing Waves - Unstable
Case	 .	 .	 .	 . .	 .	 . .	 . .	 . .	 . .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 . 84

11. Modal Amplitude Fl vs time t for Traveling Waves - Unstable
Case	 .	 .	 .	 . .	 .	 . .	 .	 . . .	 . .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 . 85

12. Modal Amplitude F2 vs time t for Traveling Waives"= Unstable
Case	 .	 .	 . .	 . .	 .	 . . .	 . .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 . 86

13. Modal Amplitude Gl vs time t for Traveling Waves - Unstable
Case	 .	 .	 .	 . .	 .	 . .	 .	 . . .	 . .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 . 87

14. Modal Amplitude G? vs time t for Traveling Waves - Unstable
Case	 .	 .	 .	 . .	 .	 . .	 .	 . . .	 . .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 . 88

Al. Step Function J (t) vs time t .	 . .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 . 119

A2. Step Time Delay Function J(t .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 . 120

iY

A



LIST OF TABLES

Page

1. Comparison of Results for Fl showing effects of Gas Dynamic

Index (i) for (Fi(0) = 0 9 F1 '(0) = 1, F2(0) = 0 9 F2 1 (0) = 0, -

Gi(0) = 0, Gi '(0) = 0, G2(0) - 0, G2 '(0) = 0) - Stable

Case (n = 60) - Standing Waves	 . . .	 . " . .	 .	 .	 .	 .	 . 89

2. Comparison of Results for F2 showing effects of Gas Dynamic

Index (i) for (Fl(0) = 0, F1 '(0) = 1, F2(0) = 0, F2 '(0) = 0,

Gi(0) a 0, Gl '(0) a 0, G2(0) = 0, G2'(0) = 0) - Stable

Case (n = 60) - Standing Waves	 . . . . . . . .	 .	 .	 .	 .	 .	 .	 . 90

3. Comparison of Results for F1 showing effects of Correction

Variable (K) for (Fl(0) = 0, F1 1 (0) = 1, F2 (0) = 0, F21(0)

0, Gl(0) = 0, G1 '(0) = 0, G2(0) = 0, G2 '(0) = 0) - Stable

Case (n = 40) - Standing Waves	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 . 92

4. Comparison of Results for F 2 showing effects of correction

variable (K) for (F1(0) = 0, F1 '(0) = 1, F2 (0) = 0, F2'(0)

0, G1(0) = 0, G1 '(0) = 0, G2 (0) - 0, G2 '(0) = 0) - Stable

Case (n = 40) - Standing Waves	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 . 93

S. Comparison of Results for F1 showing effect ••of the Gas Dynamic

Index (i) for (Fl(0) = 0, F1 '(0) = 1, F2 (0) = 0 1 F2 '(0) = 01

G1(0) = 0, Gi '(0) = 0, G2 (0) = 0, G2 '(0) = 0) - Unstable

Case (n = 75) - Standing Waves	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 . 95

6. Comparison of Results for F2 showing effect of the Gas Dynamic

Index (i) for (F1(0) = 0, F1 '(0) = 1 1 F2 (0) = 0, F2 '(0) = 0,

G1(0) = 0, G1 '(0) = 0, G2 (0) = 0, G2 '(0) = 0) - Unstable

Case (n = 75) - Standing Waves	 .	 .	 .	 .	 . .	 .	 .	 .	 . 96

7. Comparison of Results for F1 showing effects of correction

variable (K) for (F1(0) = 0, F1 '(0) = 1, F2 (0) = 0, F2'(0)

0, G1(0) = 0, G1 '(0) = 0, G2(0) = 0, G2'(0) = 0) - Unstable

Case (n = 70) - Standing Waves . . . . . . . . . . . . . . . 97

V



V1

Table page

8. Comparison of Results for F 2 showing effects of correction

variable (K) for (F1(0) = 0, F1 '(0) = 1, F2(0) = 0, F2'(0) _

0, Gl(0) = 0, Gl '(0) = 0, 62(0) = 0, G2'(0).= 0) - Unstable

Case (n = 70) - Standing Waves	 .	 .	 .	 . .	 . .	 .	 .	 .	 . . 98

9. Comparison of Stability Boundaries based on the Interaction

Index (n) - for (Fl(0) = 0, F1 '(0) = 1, F2(0) = 0, F2'(0) = 0,

Gl(0) = 0, Gl '(0) = 0 G2 (0) = 0 9 G2 '(0) = 0)*-. Standing

Waves - Epsilon = 0.1	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 99

10. Comparison of Stability Boundaries based on the Interaction

Index (n) for (Fl(0) = 0, F1 '(0) = 1, F2(0) = 0, F2'(0) _

0, Gl(0) = 0, Gl '(0) = 0, G2(0) = 0, G2 1 (0) = 0) - Traveling

Waves - Epsilon = 0.1 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .100

•11. Comparison of the Effect of Different Initial Conditions

Imposed for Standing and Traveling Waves for i = 1 and Y. = 1

Epsilon	 =	 0.1	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .102

12. Comparison of the Effects of the Order term Epsilon (F l(0) =

0, F1 '(0) = 1, F2 (0) = 0, F2 '(0) = 0, Gl(0) = 0, Gl '(0) = 0,

G2 (0) = 0, G2 '(0) 2 0) - Standing Waves when i = 1 and

K=	 1	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .103

13. Comparison of the Effects of the order term £'psilon (Fl(0) =

0, F1 '(0) =1, F2 (0) = 0, F2 '(0) = 0, Gl(0) = 0, Gl '(0) = 0,

G2 (0) = 0, G2 '(0) = 0) - Traveling Waves when i = 1 and

K	 s	 1	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .104

,w

.a

_i



LIST OF SYMBOLS

Symbol

Al perturbation modal amplitude related to f10

A2 perturbation modal amplitude related to
g10

A3 perturbation modal amplitude related to
f20

A4 perturbation modal amplitude related to
920

a dimensional constant (speed of sound)

B1 perturbation modal amplitude related to
f10

B2 perturbation modal amplitude related to
910

B3 perturbation modal amplitude related to
f20

B4 perturbation modal amplitude related to 920

B fuel drop burning rate per unit volume - dimensionless

B fuel drop burning rate per unit volume - dimensional

b thickness of annular combustion chamber's cross-section (dimensionless)

b thickness of annular combustion chamber's cross-section (dimensional)

C1 wave amplitude related to Al and B1 " " 

C2 wave amplitude related to'A 2 and B2

C3 wave amplitude related to A3 and B3

C4 wave amplitude related to A4 and B4

D
Dt total (comoving) derivative with respect to time

a -
at partial derivative with respect to time s

a0 unit vector in transverse (8) direction

a
unit vector in axial (z) direction

f function notation - real time

V11

i

,I



Symbol

ft function notation	 time delay

f,
Fourier series coefficient - functions of time - modal amplitude

for standing and traveling waves

f2
Fourier series coefficient - functions of time - modal amplitude

for standing and traveling waves

flo
perturbation variable for f, of 0(1)

f20 perturbation variable for f2 of 0(1)

fil
perturbation variable for f, of 0(c)

f21 perturbation variable for f2 of O(c)

91 Fourier series coefficient - function of time - modal amplitude
for traveling waves

g2 Fourier series coefficient - function of time - modal amplitude
for traveling waves

glo perturbation variable for g, of 0(1)

920 perturbation variable for 92 of 0(1)

glj perturbation variable for & .1 of O(e)

921
perturbation variable for 

92 of O(c)

i gas dynamic index

index 0 - no time delay, 1 - time delay

K correction variable (baffles, wall linings, nozzle, etc) OW

K, correction variable of 0(c)

L characteristic lefigth

t variable index (t a 1, 2, 3 . .	 .

n interaction index

0 order notation

i steady-state acoustic pressure

p pressure of the gas mixture - dimensionless

p pressure of the gas mixture - dimensional



IX

Symbol

r	 radius of typical point in annular combustion chamber - dimensionless

r	 radius of typical point in annular combustion chamber - dimensional

R	 inside radius of annular combustion chamber dimensional

R	 dimensionless ratio of 0(1)

t	 time - dimensionless

t	 time - dimensional
ji

u	 velocity of the gas - dimensionless

Vu	 velocity of the gas - dimensional

steady state velocity vector

u	 perturbation velocity vector

steady state velocity of the gas magnitude

u	 transverse component of perturbation velocity vector

uz 	perturbation velocity component in axial direction magnitude

z	 axial or longitudinal direction

Greek Symbols

del operator of Cartesian coordinates - dimensionless

del operator of Cartesian coordinates - dimensional

^2	Laplacian operator

e	 order term epsilon measure of nonlinearities

n	 perturbation variable of time 0(c)
4

0	 transverse (0) direction

perturbation variable of time 0(1)

3.14159

gas density dimensionless

*A

.b

gw



Greek Symbols

0 gas density - dimensional

00 initial density of gas - dimensional

o burning rate representing small perturbations from steady state
of O(l)

a steady state burning rate of 0(1)

velocity potential representing small perturbations from steady

j steady state velocity potential

41 phase angle related to Al and $1

42
phase angle related to AZ and B 

43
phase angle related to A3 and B3

*4 phase angle related to A4 and B4

velocity potential

vorticity vector

w burning rate representing small perturbations from steady state
of 0 (E)

w steady state burning rate of OW

IM

IV



1

Chaptar 1

INTRODUCTION AND LITERATURE REVIEW

During steady operation of a liquid propellant rocket engine the

Injected propellants are converted by various physical and chemical

processes into hot burned gases which are subsequently accelerated to

supersonic velocity by passing though a converging-diverging nozzle. The

operation of such an engine, however, is seldom perfectly smooth. Instead

the quantities which describe the conditions inside the combustor (i.e.

pressure, density, temperature, etc.) are time-dependent and oscillatory.

Such oscillations can be of either a destructive or nondestructive nature.

Nondestructive unsteadiness is characterized by random fluctuations in the

flow properties and includes the phenomena of turbulence and combustion

noise. unsteady operation of a destructive nature, on the other hand, is

characterized by organized oscillations in which there is a definite

correlation between the fluctuations at two different locations in the

combustor. Such oscillations have a definite frequency and result in

additional thermal and mechanical loads that the system must withstand.

Unsteady operation of the destructive variety, knovn as combustion

instability, was first encountered in 1940. At that time a British group

testing a small solid-propellant rocket motor observed sudden increases

of pressure to twice the expected level, enough to destroy a motor of

flight weight. Since met time every major rocket development program

has been plagued by combustion instability of some form. These

oscillations in the combustion chamber can have several detrimental effects.

.a



In sww cases, particularly in solid-propellant rockets, instability

can cause the steady-state pressure to increase to a point at which the

rocket motor will explode. In liquid-propellant rocket chambers experi-

encirg unstable combustion, heat transfer rates to the walls considerably

exceed the corresponding steady state heat transfer rates, resulting in

burn-out of the walls. If the chamber can survive these effects, mechanical

vibrations in the rocket system can cause mechanical failure or destroy the

effectiveness of the delicate control and guidance systems.

The phenomenon of combustion instability depends heavily upon the

unsteady behavior of the combustion process. The organized oscillations of

the gas within the chamber must be coupled with the combustion process in

such a way as to form a feedback loop. In this manner part of the energy

stored in the propellants becomes available to drive large amplitude

oscillations. An understanding of this coupling between the combustion

process and the wave motion is necessary in order to predict the stability

characteristics of rocket engines.

Combustion instability problems in liquid propellant rocket motors

usually fall into one of three categories according to the frequency of

oscillation. Low frequency combustion instability, also known as chugging,

is characterized by frequencies ranging from ten to several hundred

hertz, nearly spatially uniform properties, and coupling with the feed

system of the rocket. This type of instability is less detrimental than

other forms, and the means of preventing it are well understood. Low

frequency instability will not br considered.

A second type of combustion instability, which is less frequently

observed, has a frequency of several hundred cycles per second. This
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type of oscillation is associated with the appearance ofspatropy waves

inside the combustion chamber.

The third and most important form of combustion instability is

known as high frequency or acoustic instability. As the name Suggests,

this type of instability represents the case of forced oscillations of the

combustion chamber gases which are driven by the unsteady combusticr: process
e

and interact with the resonance properties of the combustor geometry. The

observed frequencies, which are as high as 10,000 cycles per second, are

very close to those of the natural acoustic modes of a closed-ended

chamber of the same geometry as the one experiencing unstable combustion.

High frequency combustion instability is by far the most destructive and

is the type to be considered by the following analysis.

High frequency combustion instability can resemble any of the

following acoustic modes: (1) longitudinal, (2) transverse, and (3)

combined longitudinal-transverse toles. Longitudinal oscillations are

usually observed in chambers whose length to diameter ratio is much greater

than one; in this case the velocity fluctuations are parallel to the axis

of the chamber and the disturbances depend only on one space dimension.

For much shorter chambers the transverse mode of instability is most

frequently observed. Transverse oscillations in rocket motors are

characterized bf a component of the velocity-perturbation which is

perpendicular to the axis of the chamber but the disturbances can depend

upon three space dimensions. Such oscillations can take either of two

forms: (1) the standing form in which the nodal surfaces are stationary

and (2) the spinning form in which the nodal surfaces rotate in either the

clockwiso or counterclockwise direction. Transverses combustion insta-

bility, particularly that resembling the first tangential mode, has been

do
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frequently encountered in modern rocket development programs au

the subject of much current research.

Historic Studies in the Problems of Combustion Instability

Since the early 1950's much experimental and analytical research

has been devoted to better understanding the phenomenon of high frequency

combustion instability. Most of the theories presented prior to 1966 were -.

restricted to circumstances in which the amplitudes of the pressure

oscillations were infinitesimally small in the linear regime. Prominent

among these are the pioneering studies of longitudinal instability by

Crocco [1] as well as the studies of transverse instability by Scala [2],

Reardon [3], and Culick [4]. A complete discussion of these theories is

given in the work of Zinn [5] and will not be repeated here.

Although linear theories provide the propulsion engineer with

considerable insight into the problem, their applicability and usefulness

in design is limited. The linear theories cannot provide answers to such

important problems as the limiting value of the pressure amplitude

attained by a small disturbance in the case of a linearly unstable engine,

or the effect of a finite-amplitude disturbance upon the behavior of a

linearly stable engine. In the latter case the result of many tests

indicate that under certain conditions the introduction of sufficiently

large disturbances into a linearly stable engine can trigger combustion-

instability. Another shortcoming of linear theories is the fact that

their predictions cannot be compered directly with available experimental

data; for, in the majority of cases, the experimental data is obtained

under conditions in which the -ombustion instability is fully developed

and in a non-linear regime. Therefore, theories accounting for these

w
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nonlinearitias associated with combustion instability are needed. A

more detailed discussion of the nonlinear aspects of combustion instability

can be found in a work by Zinn [5].

In the field of finite amplitude (nonlinear) combustion instability,

mathematical difficulities have precluded any exact solutions, and

approximate methods and numerical analysis have been used almost exclusively.

For this reason publications in this field are scarce. Notable among these

is the work of Maslen and Moore [b] who studied.the behavior of finite

amplitude transverse waves in a circular cylinder. Their major conclusion

was that, unlike longitudinal oscillations, transverse waves do not steepen

to form shock waves. Maslen and Moore, however, considered only fluid

mechanical effects; they did not consider the influences of the combustion

process, the steady state flow, and the nozzle which are so important-in

the analysis of combustion instability problems. Nevertheless, pressure

recordings taken from engines experiencing transverse instability reveal

the presence of continuous pressure waves similar in form to those

predicted by Maslen and Moore.

One of the first nonlinear analyses to include-the effects of

the combustion process and the resulting steady state flow was performed

by Priem and Guentert [7]. In this investigation, the problem was made

one-dimensional.by considering the behavior of tangential waves traveling

in a narrow annular combustor of a liquid propellant rocket motor. They

used a computer to solve numerically the resulting nonlinear equations for

various values of the parameters involved. Due to the many assumptions

involved in the derivation of the one-dimensional equations, the results

of this investigation are open to question.
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The successful use of the time-lag concept (see Crocco [13) in the

linear theories prompted a number of researchers to apply this model to

the analysis of non-linear combustion instability. By considering a

chamber with a concentrated combustion zone and a short nozzle, Sirignano

[83 demonstrated the existence of continuous, finite -amplitude, longitudinal

periodic waves. These solutions were shown to be unstable, however, thus

indicating the possibility of triggering longitudinal oscillations.

Mitchell [93 extended the work of Sirignano to include the possibility of

discontinuous solutions. In this manner he was able to show that the final

form of triggered longitudinal instability consisted of shock waves moving

back and forth along the combustion chamber. Mitchell also considered the

more realistic case of distributed combustion.

In the analyses of Priem, Sirignano, and Mitchell the oscillations

were dependent on only one space dimension. One of the first researchers

to study finite-amplitude three-dimensional combustion oscillations was

Zinn [ 53 whose work is an extension of the linear transverse theories and

the analysis of Maslen and Moore. Using Crocco's time lag model Zinn

investigated the nonlinear behavior of transverse"waves"in a chamber with

a concentrated combustion zone at the injector end and an arbitrary

converging-diverging nozzle at the other end. In this case, it was

necessary to extend Crocco's burning rate expression and transverse nozzle.

admittance relation to obtain the appropriate boundary conditions for the

case when the flow oscillations are of finite size. As a result of this

analysis Zinn was able to prove the existance of three dimensional

finite-amplitude continuous waves which are periodic in time. In

addition, he was able to prove the possibility of triggering combustion

oscillations. An analytical criterion for the determination of the

w



results were obtained.

In more recent years other investigators such as Burstein [10]

g	
have attempted to solve numerically the equations describing instabilities

3 ^

that depend on two space dimensions. Although tt:e resulting solutions

resemble experimentally observed combustion instability, this method

requires excessive computer time, and studies of this type for three-

dimensional oscillations will have to await the development of a much

faster breed of computers.

In a recent publication by Powell [ 11], the problem of analytically

and numerically analyzing multidimensional non-linear combustion instability
E

was investigated. The problem in doing this is that a system of non-

linear coupled partial differential equations whose solutions must

satisfy a complicated set of boundary conditions governs the phenomena of

combustion instability. These boundary conditions may describe the

unsteady burning process of the wall of a solid propellant rocket motor;

4	 a the conditions at an idealized concentrated combustion zone of a liquid-

propellant rocket engine; or the unsteady flow of the entrance of a

converging-diverging nozzle. Previously, in an effort to obtain analytical

solutions to various combustion instability problems, investigators have

been forced to simplify the original problem to such an extent that it no

longer resembled the real problem that originally was to be solved. Powell

proposed a method to perform a nonlinear stability analysis with relative

ease. This method applicable to both linear and non linear problems with

complicated boundary conditions, was a modified form of the classical

Galerkin method. The Galerkin method [11] is an approximate mathematical
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technique which has been successfully employed in the solution of various

engineering problems in the field of acoustics. Powell used this method

to specifically study the non-linear behavior of combustion driven

oscillations in cylindrical combustion chambers in which the liquid

propellants are injected uniformly across the injector face and the

combustion process is distributed throughout the combustion chamber. Based

upon the results of his second and third order theories, the following

nonlinear mechanisms were found to be important in determining the non-

linear stability characteristics of the system: (1) the transfer of energy

between modes, (2) the self-coupling of a mode with itself, and (3) a non-

linear combustion mass source. Powell found that the self-coupling

mechanism was important in the initiation of triggered instability, while

the non-linear driving mechanism was important in the determination of the

final amplitude of triggered instability.

Statement of the Problem

In this thesis, the problem of velocity-sensitive instability will

be considered. Based upon previous work on this problem, only transverse

oscillations will be considered due to mathematical simplicities. Also,

the specific geometry of the combustion chamber to be analyzed will be

annular or ring-like. The purpose of this thesis is to investigate the

mechanisms which cause these instabilities due to the combustion process

in a liquid propellant annular combustion chamber and attempt to state

which mechanisms or conditions impose the greatest effect upon stability

of combustion.

In Chapter 2 of this thesis, the governing equations of fluid

motion (i.e., balance of mass and momentum) are stated. From the equations,

^.x
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the general acoustic wave equation for non- linear combustion is derived.

F	 In this derivation, both steady state and deviations from the steady-state

conditions are considered and their effects incorporated into the general

acoustic wave equation.

In Chapter 3, the Galerkin method is used to obtain, from the

general acoustic equation of Chapter 2, equations governing the modal

amplitudes associated with the first two nodes of transverse oscillation

in a thin annular combustion chamber. These equations for the annular

combustion chamber are solved numerically by the use of a Runge-Kutta

program for various conditions.

In Chapter 4, a set of approximate equations are derived from the

modal amplitude equations presented in Chapter 3 by use of the two-variable

perturbation techniTtie. These resulting approximate equations are

expressed both in the modal amplitude and amplitude-phase angle form. In

this chapter, four special cases are presented for which closed-form

solutions can be found. These four cases are (1) standing wave--no

combustion, (2) standing wave--no gas dynamic nonlinearities, (3)

traveling wave--no combustion, and (4) traveling wave--no gas dynamic

nonlinearities. For problems not falling within the above categories,

a numerical analysis is employed to solve approximate equations.

In Chapter 5, the results contained in the previous two chapters

are discussed and compared. Stability limits are obtained and the effect

of neglecting various physical effects are discussed. In addition, the

accuracy of the perturbation method is evaluated. A summary of the

research contained in this thesis is presented in this chapter.

In Chapter 6, a statement of conclusions is made along with

recommendations for future research in this area.

w

6I
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Chapter 2

E	 DERIVATION OF THE GOVERNING ACOUSTIC WAVE EQUATION

In order to investigate the non-linear combustion instabilit;ea

that occur in liquid propellant rocket engines, one must start with tt

LEI balance laws of mass and momentum. Also, for this problem, a constitt

equation was formulated relating pressure and density. Mathematically

these principles are respectively

	

:^	 4t

a	
+ G	 ( p u) = Be	 (2.1)

p

e e e	 e

	

ate +u^u^ =-	 ( 2.2)

p = a2 p ,	 (2.3)

where

e
p - gas density

e
t - time

D - del operator of the system a3x ++
j + aa-z KY'

e

u - velocity of the gas

^c
B - fuel drop burning rate per unit volume

s^
p - pressure of the gas

a2 - constant of proportionality (in this case - speed of

sound) .

10
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The * representation denotes that the above physical quantities are

dimensional. Equations (2.1) - (2.3) are based on the assumption that

the fuel drops serve only as a source of mass for the gas phase.

Interphase transfer of momentum and energy are neglected.

Combining equations ( 2.2) and (2.3), the resulting equation is

e e
	 e *e	 a e^►

P aut t o	 u} n- a2 f P.	 (2.4)
at

For the physical situation depicted in Figure 1

exhaust

combustion chamber

variable area cross section

fuel drops enter here
through injector plates

Figure 1. Schematic of a Liquid Propellant Combustion Chamber

w

' 1
s

^
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A convenient non-dimensionalization of the variables is as follows:

3

p s pop ( pa - initial density of Bas)

u=au

L

t* Fta

P* a
2 Pop

ee
e poa
B = tE B.

Substituting these non-dimensional relations into equations (2.1), (2.3),

and (2.4), the results are

at +	 (Pu) $ B
	

(2.5)

pat + )u• ^u =-^ P
	

(2.6)

p=p
	 (2.7)

where the unstirred quantities are dimensionless.

U



Dividing through by density p, squat

+ u	 u = -

Since,

Pp - Up'	
_.

the governing equations can be summarized as

	

+ V	 (pu) s B	 (2.9)

a'U
8t+u	 u : -VU 	 (2.10)

	

P 2 0 . 	(2.11)

It will now be shown that to the order of approximation inherent

in these equations, the flow is irrotational, that-is V.x u z 0. To do

this, take the curl of equation (2.10) and set it equal to zero. The

resulting equation becomes

1

x (fit + u	
u 1 = - x In 0 = 0.	 (2.12)

Since the curl of any gradient is zero. This may be rewritten as

x 2t +fix (u • Yu) = 0.	 (2.13)

Is

Y



^- .. r .

x r = it	u) _ r .	 (2.15)

From the vector identity

X • ^ _ () -fix tax)

it follows that

u Vu=^( )-uxi	 (2.16)

Therefore,

x (u	 V u) =	 x [^(ti2 ) - u .?4•3...	 (2.17)

Recognizing that the curl of any gradient is zero, equation (2.17)

reduces to

^x(u•	 u)=- Vx(uxE).	 ( 2.18}

Using the vector identity



	

+ i 0 •1)] .	 t2.19)

Therefore, equation (2.13) become

A - (t • ^)'u +	 u) + ('u V)u - u0 • tt) = 0.	 (2.20)
at

Equation ( 2.20) can now is modified by using the definition for the total
1

(comoving) derivative which is

D^ : A 
+

Dt at

Substituting this expression into equation ( 2.20) and simplifying, the

resulting equation becomes

DO =	 U) - {u j. u + u 0	 (2.21)
Dt

Rewriting u (S^ •.t) as u LV 0 x u)] which is zero since the divergence

of the curl of any vector is zero, equation (2.21) becomes

DO = • 0 u) - {	 ) u	 (2.22)

The implications of this equation for a fluid starting from rest are as

follows. At the initial instant of time ( t = 0), the vorticity of any
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ticle will be zero. Thus, the time derivative of the vorticity

or the particle will be zero, implying that F = 8 at t = Q. Since

: 0 and D1 = 0 at t = 0, it follows that = 0 at the next instant of

time. By induction, it can be shown that = 0 for all time unless the

velocity gradient becomes infinite for any t = 0. It is assumed in what

follows that this does not occur and the flow is treated as irrotational.

Since irrotationality has been proven, the velocity vector u can

be expressed as

u = Y	 (2.23)

where ^ is the velocity potential. Substituting equation (2.23) into the

left hand side of equation ( 2.10), the result is

8t +u ^u= + 1(^^ ) - ux t

_ ata 0) + [h(j 0) 2] - v 0 x  .	 (2.24)

For irrotational flow ( = 0), the right hand side of equation (2.24)

becomes

+	 (2.25)

Therefore, equation ( 2.10) can be written ais

prat + (off v^,) + l '	 = 0	 (2.26)

M

-^
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Spatially integrating equation (2.26) produces

+	 + Ln p = a(t)	 (2.27)

where m(t) is a function of integration. from equation (2.23), it can

be seen that an arbitrary function of 
time can be added to # without

affecting the result for u. Thus, a(t) could be absorbed into 	 The

same thing is accomplished by setting a = 0 which results in

3	 ;
P = - t -	 ^+	 (2.28)

or

_

P	 e	
tt	 (2.28)

Thus, P and u are both known as functions of *. From equation (2.9), the

governing equation for * can be written symbolically as

a+ 0^2* + 	 tip = 8	 (2.30.&)

•	 ^^3t +^
P = p = e	 (2.30.b)

•	 o

Rather that, combining these quantities immediately. it is convW ei►t to

first make further simplifications based on the nature of the physical

problem that it is desired to analyze.
ww
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Steadv State Solution

First, the steady state solution of equations (2.30) corresponding

to purely axial motion will be found. Define the steady-state velocity

potential j by

V = C;(z)	 (2.'31)

where e (assumed small) is the measure of the deviation of the density

from its initial value (see equation 2.32 below). The bar notation will

represent steady-state conditions. The steady-state burning rate W is

defined from

B	 ^W.	 . -	 (2-.32)

While many other situations are possible ' , attention will be confined in

the present work to the case when W O(e). To indicate this let

(2.33)M = EG	 0(i)).

Thus, the burning rate B can be expressed as

B = E;.	 (2.34)

Equation (2.30.b) can now be written

I

E 
2 IdA

p = e - Ili r
dz)

Using the Taylor series expansion for the exponential function and

retaining only the first two terms, equation (2.35) becomes



2
I^C2 Jd#J +"Z

Substituting equations (2.31), (2.34), ar.

and dividing the result by c yields

2(NI2+	 2 
td;N 2

dz	 " I +	 _C	
td ;N3	 (2.37)4 

2	

---T)U. da	 rdz) kdz

or

2	 2
d 0 3 2 (dj^ d i

C -) ^=) +
	 (2.38)

d'	 TZ dz

Retaining only terms of OW produces

2-d 0	 (2.39)
=dz

For simplicity, only the case of uniformly distributed combustion (i.e.

constant) will be considered. Thus, integratiffg'equation (2.39) one

obtains

-0 z + C
dz	 (2.40)

where	 u- is the steady state veloc'ity of the gas.
dz

At the injector (Z = 0),	 0. Thus, C, = 0 and

dO	 Z.	 (2.41)u a—Z



c	 =..
. -- 	......	 ...	 . 	 ...	 .---- 	 w

§ 	
..	 y	
\ 	 .	 \ 	 U{2

/	
..	 .	 .	

2	 -

:	 \ Deviations from	 - dy State.	 .	 }

[!	 ^p\	 .	 K is no desired  to investigate the  stabii y of the 	 e d	 2)

[ ©	 .state solution  d ncu	 above.	 Toward  ti end, an additional	 .	 .

(\	 \	 \
^\ 	 {»

velocity potential related to perturbations from the  sea y state  i 	 .

// 	 !\j	 .\ defined  b the  eq i n

\|   	 .
/ )	 §	 n - E [n + n (n, Y * ' Z * t)],	 .	 .	 (2,42).	 }

(^	 ^ 

[ !	 A perturbation burning rate n is also  dfin d by the  eq aion
E|

( |	 a - W +	 ,	 (2,#a)
[]	 .  
\|   

(	 { It is assumed  ta w = o(E) and  tis is indicated by defining a . funct o	 \ \\

<	 o such that  o= 0(I) and  w= o n .	 Then  eqaion (2,43) becomes

a = e(a + Ca)	 (2.44)	 i

-

^ 	 T kind the	 a Tent of equation   (2,42), o e obtains

\	 V*	 EC9 + +	 +].	 .(2,45)

/	 .	 o.	 a	 °}

^  	 .  	 (

(	 .	 ` f$	 =	 E[u e + f 	 (2,46)	 {	 \

\} From  equaio (2,42), the  time derivative  o 	 can  b expressed a	 .
:!  

(	 _	 `	 .	 .

((	 at	 at	 ,	 (2.47)	 -
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Substituting the equations (2.46) and ( 2.47) into ,equation ( 2.30.b)

and simplifying, one obtains

- [e	 + 
IS
g2(u2 + 

2u az 
+ V #	 d

p = P = e	 (2.48)

Expanding ( 2.48) in a Taylor series and neglecting terms of 0(e 3 ) and

higher produces the expression

p=P=1 -e at te2
L
-^(u2+V^^^ )-u az + t 2J.	 ( 2 .49)2.49

Substituting equations (2.42), (2.44), and (2.48) into equation (2.30.a) 	 t

and dividing the result by a leads to

z	
_-t + e	 at (u2 + ^^ V^) -u azat + at (ate

2^

r	 -^	 a
t	 + `i - e at + e2 

C
—(u2 + ^^ o$) - u z

z	 at

E

+ e 2©(-(u2 + ^^ ^^)^ - u az + ' (at,2, = a + ev .	 (2.50)

Neglecting all terms of 0(e 2 ) and higher and recalling from the steady-

state solution that u = d
o 
= Qz and dz = Q yields
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2	 2V2f +	
324	 t	 +

!
a 4t	

at	 azat	 at	 at

+	 +	
3a

+ 
^^^	 $ at}^ _ -ae.at za

20 

t (2.51)

Substituting

ao
(2.52)at	 at

into equation (2.51), results in

ate^V2^ +	 2	
3

+ 2	 + Lo
at)	 u t—z at at

+af	 2o (2.53)

where only terms of 0(1) and 0(c) have been retained.	 Equation (2.53) can
2

further simplified by observing that V2^	 + 0(0.be fur	 at2

Thus, the last term of equation (2.53) can be written

a2	 0 t 9 2^	 a2 AC	 C 
3	

+ O(C)
at (V	

—t	 3 —t 2	 at 2 	
= O(Ci

Since the other terms of O(E 2 ) have already been neglected, consistency

requires that this term be deleted and the equation be rewritten as

320 V2m + C	
ate + 

2 - 32 ^ 	 + 
L [	 az a t	 at (2.54)



e K V2ka3t )	 (2.5?)

was introduced into equation (2.56). This form, one of many possible, was

chosen so that the linearized form of equation (2.56) would reduce to Love's

equation for a one-dimensional problem. This linearized form of (2.56) is

32 0	 32	 340

2 - 
84 - e K a- t-2- = 0.	 (2.58)

Thus, it can be seen that the value K will affect the acoustic frequencies.

Physically, this is the purpose of baffles, nozzle shapes, and other

physical parts of the combustion chamber. Therefore, inserting the

correction term into equation (2.56), the resulting equation becomes

a - V2 ^ t E [o at + 2^^	 8t - K V2
(12

)]  = - oe • (2.59)

E

i _
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yn this thesis, attention will be confined to transverse instability.

For this situation

0 = #(x$ Y, t).	 (2.55)

Therefore, equation (2.54) becomes

2a' - V2 0 + e[2^	 t) t at Q1 = - Q6.	 (2.56)_

To account approximately for frequency changes due to baffles, nozzle

shapes, etc., a correction term of the form

t



where K is the correction factor. This non-linear wave equation will be

the basis for numerically and analytically investigating the transverse

combustion stability problems occurring in liquid propellant rocket

engines.



Chapter 3

DERIVATION OF WAVE EQUATIONS BASED UPON AN

ANNULAR COMBUSTION CHAMBER

In Chapter 2, there were no restrictions concerning the geometry

of the combustion chamber in the derivation of the acoustic wave

equation. In this chapter, however, a set of equations will be developed

based upon a narrow annular combustion chamber. A typical cross-section

for such a combustion chamber is shown in Figure 2 below in dimensional

and dimensionless form.

(a) Dimensional	 (b) Dimensionless

Figure 2.• Dimensional and Dimensionless Form of a Circular

Cylindrical Combustion Chamber

In Figure 2 (a), the dimensional quantities are

e
r - radius of a typical point in the combustion chamber

e
R - inside radius of the combustion chamber

b- thickness of combustion chamber's cross-section.

25
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In Figure 2 (b), the dimensionless quantities are

r - non-dimensional radius of a typical point

s

R-=1
R

b-	 .
R

The first major assumption to be made in the geometry of the combustion

chamber is

3

tea/	 3	 r.

R<< 1	 (3.1)

which states that the circular cylinder can be thought of as a thin

(ring-like) annulus.

Define the characteristic length 0 by

L'^ = R* .	 (3.2)

In restricting the analysis to an annulus, a transformation to polar

coordinates is convenient. Recall that the gradient and Laplacian

operators in polar coordinates are

= er + ea a® + e  a-

(3.3)

72 Q aar'F+ r Tr + 77 a'e^ + 33Z
The second major assumption for the simplification of the velocity

potential is restricting
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+ ' 40, t)

(3.4)

r	 1

Therefore, using the operators of equations ( 3.3) on the function of

equation (3.4), the results are

= e8 88

(3.5)

2	 a2
v o = a-ef.

Substituting the results of equation (3.5) into the general acoustic pave

equation (2.58), the modified wave equation becomes

a Z m	 a 2^a^	 a^	 a 2 ^	 a"y
5tz' - =56 + 	^^ at t 2 38 ' seat - x a-ra-8 2	 _ - Qe. (3.6)

Now, express the velocity vector

u=u+u' (3.7)

where u - steady-state velocity vector

u'- perturbation velocity vector.

From the steady state solution in Chapter 2, the velocity vector was

defined as

^w

u = e dz ez]. (3.8)

A
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Define the perturbation velocity vector by

U a e	 e	
e9.	 (3.9)

Substituting equation (3.8) and (3.9) into equation (3.7) and using

equation (2.23) results in

u = e dz 
s + e	 'e	 (3.10)

To determine only the transverse velocity component of the perturbation

velocity vector, subtract the perturbed velocity component along the

axial (z) direction of the chamber from the total perturbation velocity

vector. Thus,

ut1 
m u' - uzaZ .	 { 3.11)

E

In this case, since u = u(9, t) only, there is no perturbed velocity

component in the axial direction; therefore,

ut	 c 38 e8.	 (3.12)

It is now desired to find the burning rate o in terms of the parameters

in the wave equation. To obtain this expression, assume velocity sensitive

combustion with no history effects. !Mathematically, the burning-rate

function for velocity-sensitive combustion will be expressed by the purely

phenomenological equation
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t2)
c nf --

	

c	 {8.18)

where n is called the interaction index.

Using the derived results for the general time -delay integral

(discussed in Appendix A), the burning rate with history effects

accounted for by a simple time delay is

	

t	 ,2

c = n fc t - f
=^E_)	 (8.14)

where the subscript i represents the time delay. For simplicity, it

will be assumed that

u '2	 u 02
t	 ts

Then, the burning rate can be expressed as

c nv► ! {a8^ 2- J^4 2	
^..	

3.261.`	 1	 (	 )

where j = 0 - no time delay

2 - time delay.

Therefore, substituting equation (3.16) into equation (3.6), equation

(3.6) can be rewritten

.

A

a ' 4
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2	 4^___
-t,- a t c^o^ + 2-- KaT

t nw ^t381 2 - 	
0.	 (3.17)

There is no closed form solution of equation (3.17) that appears likely.

The main purpose of the present work is to determine the modifications of

solutions of the usual acoustic wave equations that are caused by the

presense of the nonlinear terms multiplied by c in equation (3.17).

Thus, rather than attempt a finite d1'.erence numerical solution of

equation (3.17), the following procedure was adopted.

The solution is represented by the Fourier series

W, t) a f1 (t) cos 8 + f2 (t) cos 29 + g1(t) sin e

t g2 (t) sin 28 t . . .
	

(3.18)

and initial conditions are chosen such that in the absence of the nonlinear

terms, the exact solution can be formed using only the first two terms of

the Fourier series. Because of the quadratic nature of the non-lin,earitios,

the se-ond two terms in equation ( 3.18) represent a complete first order

correction to the acoustic solution due to non-linear gas-dynamic and

combustion effects. Only the first four terms in equation (3.18) are,

therefore, retained and the approximate solution determined by this method

is the simplest one capable of illustrating the influence of the nonlinear
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terms. The approximation can, of course, be improved by retaining

additional terms in equation ( 3.18) but this is not investigated.

Substituting equation (3.13) into equation ( 3.17) and using

the multiple angle formulas t, simplify ter-ms containing products of

trignomet%%Lc functions, rune obtains

d2 f	 df	 df	 df	 dg	 dg
d +fl +w d-^-t 2t f2d- #fist t°2dt^+gidt

d
t Kc rt jI + 2n4 If 1 f 2 + g1 g2 - 2jcnw 

If I T 
f 
2- + g1tg2^ Cos 6

de g	 dg	
{ ,

d
, ,
ff	

,d_g^,	
df	 dg

+ g1 t w d-^- + 2c tg2 dt t f i dt g2 d^ - f2 N

d e g	 t
t Kc dtr t 2 n4 If 192 - f2g1 ) - 2 jc4n [fl,92, - f2 t91 `1 sin

dzfdf dg df d^f
T71
	2	 dt 1 dt 1 dt dt

+zcreng12
. - 

f 1 2] - ^j%Itn ĝ1 t - f1 T1 cc °	 20

d 2gdg df dg d29

td^t 4p2 twd - 
E$1d

...1 +f1dt` +4Is€It^

- wn'-P [ffIg1] t jwn+c f1 tgl^l sin 20 + . . . a 0.	 (3.1s)

i
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Equation ( 3.19) is a summation of terms composed of some function of

time t and a term containing 0 variation. Since the equation must be

valid for all values of 0, each of the time dependent coefficients

of the 8-terms must individually be equal to zero. Therefore, four

ordinary differential equations governing the time-dependent modal

amplitudes fV 91' f2	 g2and	 emmerge from this analysis as the governing

equations to be used for analysis of instability in 'an annular combustion-*

chamber. T4! - , .,e equations are

d2f	 df	 df, 
+ f 

df
	

dg, 
+ g, dgf

2	
-A

]
,	

3t

dt2 + 1 + w	 + 2c 
f

dt	 dt	 1 dt + 92 dt

d2f
+ Ke	 + 2new	 + gIg2 	 2j En! If1Tfd7[2T +gIT92T] 0Y 2 	j

(3.20.a)

deg	 dg	 df	 dg	 df
+ g, + w I + 2E	 1 + fI dt

	 9I	
f

77L	 dt	 192 dt	 -dt	 2
0

d29

I f1

	

+ KE 
2-L 

+ 2new	 9 - f2 9 -	
If1Tg2T2jewn
	
f
2Tg, TI

=0
dt	 2	 1- 

d2f	 df	 dg	 df	 d2f

72- + 4f + w 2 + E 

9	

f	 + 4Ke
dt	 2	 dt	

1 1 
dt	

I	
dt2

2 f+ ^Cwn	
1	

12] - ;jj cw-n 
C

g,2	 f 1 2 	 0

19	
T	 T]

(3.20.0
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d_2_gg	 dg	 df	 dg	 d2g

€.
d +4g2 + ^d^_ gid#^`tfld-1 t4Ksdat

wne 
If 19 1 t jnws I

f I'rgI-r] - 0 	 (3.20.d)

In the following work only instantaneous combustion will be considered.

Thus, the appropriate equations are equations ( 3.20)'with j = 0. These

equations are recapitulated below.

d2 f	 df	 df	 df	 dg	 dg
d̂ +fl tw d-L+2e f2 d^+f1d-tZ+g2dtl+gidtZ

d2f
	

('	 i
+ Ke d*2 L + 2new f1 f2 + g1g2J = 0	 (3.21.a)

11

d2g	 dg	 df	 dg	 df	 dg
d + g1 + w dtl + 2e 92 d

^ + f1 d
^ - gl d^ - f2 d—t1-

d2g
+ 1Ce d	 + 2n	 Ifi92 - f2g1J = 0	 (3.21.b)

d2 f	 df	 dg	 df

d7+4f2twddt	 1dt^ ,fidtl

d2f	 ll
+ 4M d^ + kewn 

[

912 - f1 2
J 

= 0	 (3.21.0

w
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The equations of (3.21) were solved numerically by the use of the

quartic (fourth-order) Runge-K utta method. To use this method, the

equations of (3.21) are modified by defining the quantities

df
del a1

df
d_ 2 - a2

d

d
^1 = b1

d

ddt - b2 .	 (3.22)

Substituting these expressions into equations ( 3.20) and solving these

equations for the highest derivative ( in this case - second order), we get

da
d--t^- _	 f1 - w(a1 ) - 2ci(f2 (aI + fI (a2 ) + g2(bl)

+ 9
1

(b 2 )^ - 2ncw(fIf2 + g 19 2 )] Al + KE)
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db

L= gl - w(bl ) - 2ei^g2(a1 ) t fl(b2 ) - gl(a2)

- 
f 2(bl )

1 - 2new ( fl92 - f 291 )]/(' + M)

da
	 14f/d2 	 2 - i^(a2 ) - Ei(gl (b1 ) - f1(al)^

-'gyewn 
1912 - f

lj /(1 t 4Ke)

db

[92d
b 4  - w(b2 ) t ci(gl(al ) + fl(bl))

+ wne (f 
191 )]/(1 + 4Ye)	

(3.23)

where i is the gas-dynamic index.

By the development of a computer program incorporating the Runge-

Kutta algorithm which can solve systems of first-order ordinary differen-

tial equations, the eight equations (3.22) and (3.23) were numerically

solved for the eight variables al , a2 , b19 b2 , f1 , f2, 9
1
9 
and 92.

Different cases involving varying the gas-dynamic index, interaction

index, the correction variable (K), and the order term (epsilon) will be

discussed and compared with the perturbation method of solution in a

later chapter. In Appendix B, a sample program listing this calculation

appears.



Chapter 4

TWO-VARIABLE PERTURBATION METHOD APrLIED TO THE

ACOUSTIC WAVE EQUATIONS

In this chapter, a set of approximate equations will be developed

from the governing equations for the modal amplitudes (3.21), by the use

of the two-variable perturbation method. 	 The two-variable method is well

suited to this type problem since one expects the solution to consist of

Z

sinusoidal functions with slowly varying amplitude. 	 Applying this method,

define two variables representing time

t

et	 (4.1)

Therefore, the four modal amplitudes would now be

f	 f l(E'n)

f2	
f 2(&,n)

91	gl(e'n)

92 	 92 (&,n).	
(4.2)

By applying the chain rule of differentiation, it can be shown that

dZ 	 3Z+ 
C LZ	 (4.3)dt	 8	 an

and

36
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2	 2	 2	

2	
2

-s a z + 2e 3n + E	
2	 ^4.4)dt	 a	 an

where Z = 
fl' f2' gl' 92 respectively for each of the above equations.

By substituting equations (4.3) and (4.4) for each modal amplitude into

equations (3.21) and keeping terms only of 0(1) and 0(E), the resulting

equations become

32f 	 '2f'	 l	 f la ^- + fl t E [2 a s + Q aof t 2f o
2 a + 2f 

af2
1 a + 2g 

agl
2 a

r	 ^	 E n	 E	 ^	 ^	 C

ag	 32f
+ 2gl 

az2 
+ K az + 2nw(flf 2 + 9192 )3 = 0

a 2g1 	a2g1	 agl	 afl	 , ag2 	 af2
ate— + 

gl + 
e[2a^an 

+	 + 2g2 a + 2f1 at - 2g1 a&

ag	 a2g
- 2f2 

ail 
t K 

ail 
+ 2nw( flg2 - f2g1 )] = 0

a2f2	 a2f2 — af2
+

agl	 afl
a-— t 4f2 + e[2 acan + ° at	 gl a& - 

fla&

a2f2
+ 4K a-=- + ' ^;:,n(g1 2-f1 2 )] = 0

a2g2	 2% — 292	 afl	 agl

ate'- 
+ 4g2 + e[2 

a
acan + v a& - 

gl a& - 
f1 

a&

a293
+ 4Ka- - wn(flgl )] = 0 (4.5)
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From the straight-forward perturbation method, define the modal amplitudes

by the series expansions

fl = f10Q 'O + E fli (con) + . .

f2 = f20Q 'O + c f21Q.n) + . .

gi = 10Q.0 + gli(E.n) + . .

92 = 820 (C.n) + E g2l(E.n) + .	 (4.6)

Again by applying the rules of differentiation, it can be shown that

aZ _ aT	 aK
a^ - aC + 

e 
a&

32z = 
a—z- + E a--K

9 E2	 a^	 a^

22Z	 2K

where	 Z = f
l , f2' 91' 92

T = f10' f20' 910' 920

and	 K = f 11 f21' 9
11' 921' respectively.

Substituting the expressions of (4.6) and (4 . 7) into equations ( 4.5) and

keeping terms only of 0(1) and 0 ( E), the resulting equations become



af20 	 1910	 1920	 .32f to+ 21 10 
aC + 2920 ag + 2810 ag + K D44

+ 2n;(f
10f20 + 910920 )] a 0

8
2

RE'- gTl'0' + s10 + e[ â  + g11 + 2
 a

2
9101  + a agl0 

+ 2820 of 
to

ag2o af20	 aglo	 a2910+ 2f
lo T&-- 2810 T9— 

2120 a& t K eTT-

+ 2nw(f
lOg20 - f20&lO )] - 0

a 2f	 2	 a2f	 of

g2 + 4f 20 + c[ a	 + 4f21 + 2 acan + Q a 
20

+ 910 110 _ f10 a^10 t 4K a--T-+ Z n(8
10 - 1102)7 = 0

a2 920	
9 2 
921	

3 2 8	 _ g20 	a 20
at-

P-- + 
4g2o + E[a^— + 4921 + 2 aCan + Cr a E

af	 g	 2g

-910 
3&10 

_ f10 
a&10	

a+ 4K s—z - wn(f
log10 )] ' 0	 (4.8)

By separating the terms of 0(1) and 0 ( c) in the equations of (4.8) and

equating both sets of terms equal to zero, the resulting equations become

2

aT + flo a 0
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A 2S10
a&2 

t 810 0

32f 
20a

4z t4f20 = 0

9
a4 z + S20 a 0	 (4.9.a)

32— f + f	 a2 10 - a of 10 2f 
af10 - 

2f 
020

a C	 11 ° - aca n 	at	 20ag	 loaf

10	 a	

z
-2g2oat - 2810 aa t - K a- 	 - 2nwlf10f20 + 910920)

321 + g = - 2 a2glo 
_ aglo 

_ 28 10 - 2f ag20
a^	 11	 agan 	at	 20 at r	 to at

of	 1910 	 2g

+2g10 
ac20 

+ 2f20 
aC _ K aC2 - 2n7 f10920 - f20g10)

32
-21 + 4f - - 2 

a2f
20 _ a
	 g
 32f 20 _	 3810 + f af10

a^	 21	 a^an	 at	 10 at	 10 at

-4K a2-
20 

- -l'n(g 2 - f 2)
a^	 2	 10	 10

a2 g21	 a2g20 — 3g20	 3f10
ate- 

+ 
4g21 ' -2 W

n - a at + 810 a&

2
t f10 a&10 - 4K E-7- t nW(f

10910 ) .	 ( 4.9.b)
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The equations of (4.9 .a) are linear second-order differential equations.

Therefore, it can be shown that assuming the appropriate farm of a solu-

tion, the results become

f	 A
10 A

1
 
(n) cos + B 

1 
W sin

910 A
2(n)  cos + B2(n)  sin

f20 A3( n)  cos 2E + B3(n)  sin 2C

S20 z A4 (n) cos 2C + B 4(n) sin 2C	
(4.10)

Substituting (4.10) into ( 4.9.b) and using the multiple-angle formulas

k yields

^Al _ L "T + 1
2	 :24 A	 + B

3&2 
+ f 

11 
- 2 
L d2	 1A3	 lB3)

1
-(B B + A A ) + A A + B B	 (A A + B B

	

1 3	 1 3	 2^-:_^4 2 4
	2 4	 2 4	 2 4

2
*l + nw[ 

2 
(A 

1 
B 

3 - A 3 
B 1 ) +-12(A 2 

B 4 - B2 A 4) 
31 

sin

-2
I dBl 

+ - 
1_ 
Bl 

1

	

ud—	 + -:2RA
3 
B, - A,

	

r,	 r	 B 3 ) + (A 
1 B 3 - A 3 

B 
I

+ .1 
(A4 B2 - A2 B4 ) + (A2 B4 - B2 A4 	

1
^KA

2 

	

1	 1+ZW[-!2 ( AlA 3 + B 
1 
B 3 ) + -1 (A 2 

A 4 
+ B 

2 
B 4 )1] cos C +



^3-- 1= + BI, n -2 - 2 - 1 a t ^A^A^
	n 	

+ BBB )
BIZ 

-(A 1A4 t B1B4 ) + (A2A3 + B2B3 ) - 24A2A3 + B2B3)

- 2 KB  + nys[ (A1B4 - A4Bl) - .A2B3 - A3B2)]I sin E

-2 ^ t rB2 t 2 A4Bl - NA1) + (A1B4 - A4B1)

{A2B3 - B2A3 ) - Z{A3B2 - A2B3} 2 KA2

nw[2 AlA4 + B?4) - 2'A3A2 + B2B3)7^ cos E + .

32---
21 

+ 4f21 s -2 -2d
dA

 3 - 2 (2A3}D&2 	 n

+ 2 [2 B22 - A22 ) - 1 B12 - Al2 )] + 2K(-4B 3)

d8
t V[A2B2 - AlBl ] sin 2& -2 2dn3 + 2 ( 2B3)+(A282-A1B1)

+2K(-4A3) + 4 — A22 - B22) - 2 Al2-B^.2)] cos 2E + 	.

;2 221 
+ 4821 - -2 -2^ + -f

a^	
[-2A4] - 2 B 1B2 - A1A2)

+ 2B1B2 - Al A2 )] + 2K[ -4847 - in-wtl AlB2+A2B1 )J sin 2&

42

-2 2 4 + VE2B47 - ^ 3(B2Al+A2B1)+Z B2Al+A2B1)]



where t . . . indicates terms multiplied by sines and cosines of integral

multiples of E other than those shown. The particular solutions corre-

sponding to the terms shown on the eight-hand sides of (4.11) will contain

terms proportional to E sin nE or E cos n{ [n • 1 for (4.1l.a, We n s 2

for (4.1l.c, d)3. Thus, the second approximation would be unbounded for

large C while the first approximation is bounded for all C. These

unbounded terms are called singular terms. The terms on the right-hand

sides of (4.11) indicated by + . . . do not lead to singular term:.

The idea of a perturbation solution is that higher order terms in

the series solution represent small corrections to this first term to

obtain a uniformly valid expansion. The presence of this singularity

causes this fundamental idea to be violated. Therefore, since the expres-

sions of n dependency are independent of the variable causing the singu-

larity, the n-dependent expressions can be set individually equal to zero

to avoid this problem. Therefore, from equations ( 4.11), the resulting

equations, which are eight ordinary first-order differential equations

having n dependency, become

dA
n- t 

2 
A^ t ^ l

 + 2{AlA3 
+ H1B 3 t A2A4 t B2B4]

+ 2 WLB 1A3 - AlB 3 + B 2A4 - A2B43 = 0

dB
T- + 2 Bl - KAl + -12-CA 1B 3 - B1A 3 - A4BZ t A2H47
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t * fZZA,AB + $1BB + A A4 t 884] o

dA
^ +^A2 + 2+2 1A4 tBB4 - A 3 = B2B 3Tin— 	 1^"	 a

t VZ-AID4 t A4B1 + A2
3
3 - A021 = 0

t B 2 tKA2 t 2 -A481 + B4A1 - A2 3 t A3B2

t i rwt 1A4 + B1B4 - A3A2 - B2B3 ] . 0

d
dA 

3 t PA3 + 
4XB

3 + I [A 22 - B2 2 + B1 2 - Al 2]

+ ^CA1B1 - A2B2 ] z 0

do t oS 3 - 41x13 + 44A 
2 
B 2  - A1B13

+ 16 nCAZ2 - B22 - Al 2 + B12 ] = 0

d- tA4 + 4KB4 + 4 B1B2 - A1A2]

+ l►nCA1B2 + A2B1 ] = 0

+B4 - 4KA4 - 
4'CR2A1 t AZB1]



k

45

- 8 n[AjA2 - B 
1 

a 0
	

(4.12)

Sinc e equations ( 4.12) are first-order nonlinear ordinary differential

equations, the fourth-order Runge-Kutta program, previously developed,

can be used to solve for the modal amplitude coefficients. By finding

these coefficients for various points in time, a relation between the

results of equation (3.21) and equation ( 4.12) can be observed to the

approximation of order e.

Solving equations (4.12) for the highest derivative (first order

it +.his case) and substituting n = et, the governing equations for the

Funge-Kutta program become

dAt

=e[-
 

VA - fIB - 1 (A A t B B t A A t B B)dt	 2 1 2 1 2 13	 13	 24	 24

- ?w(BlA3 - A 1 B 3
+ B 2A4 - ASR+)]

d81=

t B + 1--'.A - CAB - AA - AB tAB)dt	 2 1 2 1 2 13	 13	 42	 24

- 2i:(A1A3 + B1B3 + A2 4A + B2B4)]

dA,
dt' W. c C- p A 2 - 2:8 2 - ^A 1A4 + B 1B 4- A 2A3 - B 2
- rw(A4B1 - A 1B4 + A2B3 - A3B2)]

dB

t- = e C- pB 2 + 2 KA 2 - -ftB4A1 - A431 + A3B ` - A2B2)

i
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^n(A1A4 t B 
1 
B 4 - A3A2 - B2B3)]

dA33
=E[- 1--4KB - 1 A 2 -B 2 tB 2 -A 2)dt	 2 3	 3 8 2	 2	 1	 1

- 8 w(AlB1 - A2B2)]

dBdt = E[- -l2-cB3 t 4KA3 - 4 A2B2 - A1Bl)

- 16 w(A 22 - B22 - Al2 + B12)]

dA

d4 = E[- 2 A4 - 4KB4 - B1B2 - AlA2)

- -18-nw(A1B2 t A2Bl)]

ddB4 = e[- 
2 

B4 + 4KA4 + 4 B2Al + A2Bl)

+ 8 n(AlA2 - B1B2 )]	 (4.13)

It is often convenient to express the equations , for Ai and Bi in

terms of amplitudes, Ci , and phase angles, 0i2 which are also functions

of the slow time variable n. Mathematically, we can express the relation-

ships between the quantities as

Ai = C  cos ^i	 (4.14.a)

Bi = C  sin ^i	 (4.14.b)
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dAidCi cos	 C d#i sin 0 	
C4.14.0

do - do 	i	 i do	 i

dB 	
dCi sin }. + C - fi cos	

(4.14.d)

do	 i	 i 

d

do	 i

where i = 1, 2, 3, and 4 for each of the equations above. Substituting

the expressions of (4.14) into the first two equations of (4.12), the

resulting equations become

ddCl cos Q	 C dIl sin Ol t 2 oCl cos 01 t -' 1
Csin Ol

do	 1	 1 do

t -12-[C1C3 cos ¢l cos 03 + ClC3 sin Ol sin 03

+C2C4 Cos ^2 Cos ^4 + C
2C 4 sin ^2 sin X41 + ^^C1C3

sin 01 cos h - ClC3 cos Ol sin h + C 2C4 cos 04 sin 02

- C 2C4 cos ^2 sin X43 = 0

dCl	 do,	 1—	 1
d sin ^l + C1 do cos ^l + 2vCl sin 0 1 - 2 C

1 cos O1
n

•+ 2 C1C 3 cos ^l sin ^3 - C 1C3 cos ^3 sin Ol

- C2C4 Cos 
04 Sin 02 + C2C4 Cos 

^2 sin 041 + 2 ^C1 C3

cos ^l cos ^3 + ClC3 sin ¢l sin 03 
+ C 2C4 cos 02 

cos 04



i
9=

_E
	 48

+ C 
2 
C 4 sin f2 

sin X43 = 0	 (4.15)

Multiplying the first equation by cos ¢ 1 and the second equation by sin0l,

adding the two expressions together, and using appropriate multiple-angle

identities from trigonometry, the resulting equation for C 1 becomes

drtl + VC, + 2 C1C3[cos(201 - 03)]

+ C2C4[cos(O2 - 
04 

+ 01 )]) + 2w{C1C3

sin(2¢1 - 0 3 ) t C 2 C 4 sin(o2 - 04 + 01)) = 0. (4.16)

Similarly, multiplying the first equation of (4.15) by -sin ^1 
and the

second equation by cos ^ 1 , adding the two expressions together, and using

appropriate multiple-angle identities for trigonometry, the resulting

equation for ^1 becomes

dnl - 2 - -[C3 sin(2^
1 - ^3 ) t 

CCC4 
sin(O 2- 04

+0 1)]
1

cc

+ 2 

_
w[C 3 cos(2^ -m 3 ) t	 4 cos(¢1+t2-¢4)] = 0 	 (4.17)

1

Using these procedures discussed above, equations for C2, ^2 9 C3' 03' C4'

and 04 can be derived. Thus, these transformed equations are

dCdn2 
+ -rC 2 + 2 C1C4 cos(Ol 0 4+ 2 ) - C2C3cos(2^2-03)3

t ^w[C1C4sin(O 1-04+0 2 ) - C 2C3sin(2^ 2-^3 )] = 0



+ 2 w[C^
C4 

cos(O 44+^2 ) + C3cos(242-^3 )J = 0
2

dC

dn3 
t 
2 

C3 + 8 C22cos(202 #3 ) - C12cos(2#1 ^3)]

- I -CC 22 sin(2^ 2-^3 ) - C12sin(2fi Y] = 0

dO	 2	 2

dn3
 - 4K + $ C2 sin(2¢ 2

-^3 ) - C1 sin(20
1 ^3)]

3	 3

C 2	 C 2	 .

+ 16 w[C3 cos(20 2-$3 ) - C1 cos(201-0 3 )^ = 0
3	 3

dC 

4dn + V'C4 - '4![C1C 2cos(01+02 -04 )] + ^w[C1C2

sin(O 1 + m2 - 04 )] = 0

dO

dn4
 - 4K + ^ C^C2 sin(O1+0 -04 )] - 8nc^[C^C2

4	 4

cos(O1 + 
02 - 

04 )] = 0. (4.18)

Equations (4.16), (4.17), and (4.18) are the general combustion

equations in terms of amplitudes and phase angles. From this point,

special cases can be investigated isolating certain conditions and closed-

F
r

•

Y
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form solutions can be obtained for these cases. It is convenient to do

this in order to check the closed-form results of the special cases with

the results from the general equations ( 4.16), (4.17), and (4.18) when

the same conditions are imposed.

The first case to be evaluated is the case for standing waves

with no combustion effects. To simulate standing wave effect, set the

amplitudes C 2 and C4 and phase angles 
f2 

and f4 equal to zero. This

automatically satisfies four of the eight equations (4.18). To achieve

the no-combustion effect, set the interaction index, n, equal to zero.

Also, set the correction variable, K, equal to zero since the effect of

K will be investigated separately at a later time. Imposing these con-
.

ditions, the governing equations reduce to

dC

dnl + 2 
^1 + 2 C1C3 cos(2^1-03 ) = 0	 (4.19.a)

dnl - 2 [C3sin(2^1--^3)] = 0	 (4.19.b)

dC
dn3 + 2

0 C3 - 8 C
12c os(201 0 3 ) = 0	 (4.19.c)

do

dn3 8 
C12 sin(201-0 3) = 0.	 (u.19.d)
3

The initial conditions imposed for this case are

C1 (0) = 1
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C3(0) s 0

fl(0) = f10

X3(0) = 030	
(4.20)

To attempt a closed-form solution, let

Cl = e-ha-ngl	 (4.21.a)

C3 = e-^anF3	 (4.21.b)

dnl = e Q)gl + e-kOn(dnl)	 (4.21.0

an
3 

= e-k5n(- -)F3 + e-kan( dn 3 )	 (4.21.d)

Substituting these expressions into equations (4.19.a) and (4.19.0 and

dividing through by 
e-fin, 

the resulting equations become

dF
dn1 +-! cos(2^1 - ¢3)e-fcnF,F3 = 0
	 (4.22.a)

F3 - 1 cos(2^ 1 - ^3)e zQnF'2 = 0	 (4.22.b)d
n

Multiplying equation (4.2.2.a) by 1/4 and equation (4.22.b) by F 3/Fl and

adding the two equations, terms containing the cos(201 - 03)e On are

eliminated. In doing so, the result becomes

4

L
r
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dF	 £ dFǹl t 3 dn3 = 0	 (4.23)I

Multiplying through equation (4.23) by F1 gives

2 do [£12 + 4F323 = 0	 (4.24)

Integrating with respect to n then dividing by 1/2, the resulting aqua-

_	 tion becomes

F12 + 4F32 = D1	 (4.25)

where D1 is a constant of integration. This constant depends upon the

initial conditions imposed on the problem. From the initial conditions

given in (4.20) and using the transformation (4.21.a) and (4.21.b), it can

be shown that F1(0) = 1 and F3 (0) = 0. Therefore, D1 equals to 1. Thus,

equation (4.25) becomes

F12 = 1 - 4F3 2 	(4.26)

Tak.ng equation (4.26) and substituting into equation (4.22.b), then

separating variables, the resulting equation becomes

dF3 = 8 - 
ancos(2¢1-0 3 )dn 	 (4.27)

[1-4F32]

Letting 201 - 03 = Qn,which satisfies equations (4.19.b, d), yields

cos(2^1 - 0 3 ) = (-1)t where t = 0,1,2,3. . . Substituting this expres-

sion and integrating the above equation, the resulting equation becomes



F3 =^tanh[^ -1)x(1-e^n)7 (4.29)

53

2 tank 1 2F3 : [- 2 e'°n+D2j (-1)1	 (4.28)

where D2 is a constant of integration. Using the initial condition F3(0)=

0 9 then, it can be shown that D 2 = 2/0. Substituting and taking the

hyperbolic tangent of both sides of equation ( 4.28) 9 the result becomes

0

Substituting this expression into equation ( 4.26) and simplifying, the

resulting equation becomes

F1 = sech[ (-12 (1-e-^°11)]
2v

(4.30)

Substituting equations (4.29) and (4.30) into equations (4.21.a) and

(4.21.b), and substituting n = et and w = ae, the resulting closed-fora

solution for wave amplitudes C 1 and C3 are

Cl = e- t {sech[
t
	-{ l-e- ^t )3)	 (4.31.a)

2w

-fit 	 Z

C 3 = e 2 (tanh[E(--1) '1-e-

	

t )]}	 (4.31.b)
2w

To find expressions for 
^1 

and 0 3 , substitute the relation that 201 
03-1_11

into equations (4.19.b) and (4.19.d) and integrate and evaluate the con-

stants of integration with the initial conditions; the results are

^l = X10
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¢3 
2 #30 - 2#10 -1-w
	

(.4.32)

where 
410 

is a constant and 
f3 

is is radians out of phase with 2#1. It

can be seen that a special set of initial conditions is necessary to be

consistent with this solution. A representative set is 010 = 030 
r 0

which corresponds to L = 0.

Inspection of equations (4.31) reveals that the magnitude of C1

continually decreases with time while the magnitude of C 3 first increases

and then decreases. An interesting special case of equations (4.31)

occurs in the absence of steady-state combustion G = 0). The results of

this case are

C1 = sech[ (-1)4'eet^

C3 = 2 tanh[(-14 Eta	 (4.33)

These results show that a disturbance in the form 4f the first mode is

transferred to the second mode as time increases. It is thought that this
F

indicates the beginning of the steepening that leads to the formation of a

shock wave. It can be seen that the presence of damping, in the form of

steady-state combustion, inhibits this process.

The second case to be investigated is that of standing waves with

gas-dynamic nonlinearities neglected. To simulate the standing wave

effect, let the amplitudes C 2 and C4 and the phase angles ¢ 2 and #4 equal

zero. Again, this automatically satisfies four of the eight equations of

(4.13). To achieve omission of gas-dynamic nonlinearities, let i = 0.

Also, let the correction variable, K, be equal to zero for simplicity.



In doing so, the resulting equations, based

become

d 1
+ 2 cCl +	 nw[C1C3 sin(2#1 - P3 )J a 0

d_ -+ 2 3	 16 n;[-Cl 2 ain(2 0
1
 - #3 )3 = 0

2

+ 16 n;[- C1
 cos(2^1 - $3 )3 a 0dn3

3
(4.34)

The initial conditions imposed for this case are

C1(0) = 1

C3(0) = 0

#l(0) _ X10

X3(0) = 
030 0	

(4.35)

Let 201 - 03 
= (2t + 1)n/2, t = 0, 1, 2 . . . . This implies that sin(201

- 03 ) _ (-1)t and cos(20 1 - 0 3 ) = 0. Substituting into (4.34) and solving

in the manner indicated previously one obtains expressions for the ampli-

tudes for C1 and C3 which are

C1 = e
-fit

{sec[ 4 nc(-1)x(1-e
- ,t 	

(4.35.a)
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C3 = e- 	{tant 4 nc(-1) 'x{1-e`t )J?	 (4.36.b)

1 X10	
(4.36,0

$3 = 2410 - {
3=)^	 (4.36.4)

where 
#10 

is constant and #3 is (21t1)w/2 radians out of phase with 2#10

As in the previous solution, special initial conditions are required to

produce this solution. A representative set is 010 : 
0 ' #

30 = -A/2, which

corresponds tot = 0.

The secant and tangent both become infinite when their arguments

take on the value to/2. In (4.36.&, b), the arguments of these functions

start at zero at t = 0 and have a maximum absolute value at ne/23/2.

Thus, if ne / 23/2 < v/2, the tangent and secant never become infinite and

C1 and C3 eventually decay to zero due to the influence of the exponential

function. This is a stable situation. If, on the other hand, ne/23/2 >

v/2, the tangent and secant become infinite at t. _ ( 2/w)je n[l-24w/(nc)7)

causing C1 and C3 to become infinite. This is an unstable situation.

Thus, the boundary between stable and unstable behavior is indicated by

the equation

ne/23/2 S R/2 .	 (4.37)

The stability equation in the n-e plane has the form

n = 2%7► /e = 4.442/e .	 (4.38)

This has the form of a rectangular hyperbola and is independent of w.
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For the case of traveling waves, it is x= convenient to work

with the general perturbation equations expressed in modal amplitudes

in term of the seal time variables, equation (4.13). To simulate the

effect of spinning or traveling waves, let the following modal ampli-

tudes be equal. These relations are

B2 s Al

84 s A3

B1 s -A2

B3 s -A4 .
	 (4.39)

It can be shown that substituting the relations (4.39) into equation

(4.10), expr._ssing the results in terms of the real time variables, sub-

-	 stituting these expressions into equation (3.18) 0 and using appropriate

multiple-angle formulas leads to

#((),t) = Aicos(t-B) - A23in(t-8) + A3cos 2(t-0)

-A4 sin 2(t-0) +	
.
	 (4.40)

which has the form of a sum of traveling waves. Substituting the expres-

sions in (4.39) into equations (4.13), these eight equations reduce to

four pairs of identical equations. The four independent a ,ations listed

below are

t

dA	
c[- 2 oAi HCA2-i(AlA3+A2A4)-nm(AlA4-A2A3)]
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4A 
2 s tC- aA2 - 2 KA1-i(AlA4-A2A3)+nw(A2A4+A1A3)]

dA
^= s C r-	 aA3+4KA4+ 4 (Al2-A22 )+4 w(AlA2)^

dA

Tt^
4 
s tC- 1 aA -4KA + 1 i(A A )-	 (A 2-A 2 )] .T 4	 3 2	 1 2 8	 1 2 (4.41)

By making the substitution, we have reduced to a system of four equations

and four unknowns. By solving for the modal amplitudes AV the modal

amplitudes B  are readily computed by using the relations of (4.39) to

determine the entire nature of the wave form.

For the case of traveling waves omitting gas-dynamic nonlinearities,

let the ampiitudes Al and A3 equal zero. T$-_.s set i, the gas-dynamic

index, equal to zero. Again, for simplicity, let the correction variable.

K, controlling physical chamber configurations, be zero. In doing so, in

terms of the transformation variable, n, the resulting equations became

dA 

2t^cA2 - nwCA2A4]=0

i4t 2^A4 -an^A2=D
	

(4.42)

which is a system of two equations and two unknown modal amplitudes. To

find an exact closed-form solution to these equations, let

Al a e-ha-npl

A4 s e-h;flF2
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d: 
s e-ant- 1 W t o Wn 

dFl

do	 2 1	 do

an4 a e-fin(- i v)F2 t 
a-hon 2	 (4.43)

Using these transformations, the procedure for solution is exactly the

same as for the standing wave case for both no combustion and no gas

dynamics. The initial conditions for this case are

A2(0) s 1

A4(0) - 0
	

(4.44)

Substituting the expressions of (4.42) into (4.41), the resulting equa-

tions are

dr
dnl - nwF1F2 a-kon : 0

dF

dn2 -
	 nwF12e-fan = 0	 (4.45)

with initial conditions

F1(0 ) = 1

F2(0) = 0

Solving these equations in the manner outlined in the standing wave solu-

tions. the results are
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F = sec[
/2-

 n;(1-a-fin)]
v

r2 = tangy 2 nw (1-e

2^ a

results of ( 4.45) in terms of modal amplitudes by substi-

F.42), the resulting equ-`ions became

A = e°nsec[ /2- nZ (1-a
-an)72

a

-fan
A4 = 

e	
tan[

 r2- nw (1-
e Qn )1 	 (4.47)

2r	 a

(4.46)

The results for traveling waves (4.47) are quite similar to the results

for standing waves ( 4.36) for the case of no gas-dynamic nonlinearities.

The same behavior can be expected as was discussed in the standing wave

case about the nature of oscillation of the modal amplitudes. The only

significant difference is the value to deter7'-e the boundary of stability

for the interaction index governing the combustion terms. The stability

condition for traveling waves is

	

2 nE
	

2	 (4.48)

Thus, the equation of the stability boundary in the n-e plane is

	

it	 2.22
n =	 =

e	 (4.49)

Comparing equation (4.49) to (4.38) shows that the stability boundary for

the interaction index is half as great for the traveling wave case as for
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the standing wave case for any E . This will be verified in a later pre-

sentation of results of various numerical cases.

For the case of traveling waves with no combustion, let the ampli-

tudes A2 and A4 equal to zero. Then set n, the interaction index, equal

to zero, and, again, let the correction variable K equal to zero. Sub-

stituting into equations (4.40) and transforming into variable n, the .

results are

dA
dnl t 2 a Al + A1A3 = 0

dA 

3
dn + 2 a A3 - 4 Al2 = 0 (4.50)

,
E.

with initial conditions

A1(0) = 1

A3(0) = 0

which again is a system of two equations and two unknown modal amplitudes.

To find an exact closed -form solution to these equations, use similar

transformations as shown in (4.42). In doing so, and simplifying, the

results are

dF 

l
dn + e^an F1F2 = 0

d2 - 4 e- on p12 = 0	 (4.51)
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with initial conditions..

F1(0) = 1

F2(0) = 0

Solving these equations in the same manner as before, the results are

F1 = sech[l/a(1-e-Qn)1

F2 = 2 ta nh[l/a(1-e h°n )7	 (4.52)

Again, expressing the results of (4.51) in terms of the modal amplitudes

of the form of equation (4.43), the resulting equations become

At = e-hansech[l /Q(1-a
-hQn)I

-^Qn
A3 = 

e 2 tanh[1/a(1-a- Qn)J 	(4.53)

The results for the traveling waves (4.52) are similar to the results

for standing waves (4.31) for the case of no combustion. A disturbance

initially having the form of the first mode eventually is transformed into

one having the form of the second mode. To compare these results for

standing waves and traveling waves to the general perturbation equations,

two computer programs were written (Appendices D and E) which numerically

evaluate the modal amplitudes of various conditions for standing and

traveling waves.

_f

1
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One last special .case is an investigation of the effect of the

correction variable K. In the special cases previously discussed, the

correction variable K was set equal to zero. But, in this discussion,

the correction variable K will be of primary importance in the equations.

To start this analysis, refer to equations (3.21). Based upon these

equations, impose the following conditions. First, neglect combustion

effects (i.e., n = 0). Then, let us consider only the case of standing

waves (i.e., gl = g2 = 0). Finally, let us neglect the steady state

burning rate (i.e., v = 0) and assume that the terms multiplied by eK

are larger than those multiplied by a above. This can be accomplished

by writing

Ke = eK
	

(4.54)

and treating K1 as a quantity of 0(1). Impcsing the above conditions

and substituting equation (4.54) into the equations (3.21), the result-

ing equations become

	

d2f	 df	 df
[1+K1]

	

	 1	
l

+ fl + 2e[f2 dt + fl dt27 = 0	 (4.55.a)
dt2

	2 	 df
[1+4K11 d ` + 4f2 - ef1 dt

l	0	
(4.55.b)

dt
2

with initial conditions

f1(0) = 1

iir.j i-_,

P
	

N
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df
^0) = 0

f2 (0) = 0

df
dt24 0) = 0

°irst, assume a straightforward perturbation solution similar to the

equations (4.6) except the functions are dependent upon the real time t.

Substituting these assumed solutions into the equations and initial con-

ditions of (4.55) and keeping term: of 0(1) and 0(e), the separated

equations become

d2f10+ 1+K ) f10	 0	 (4.56.a)
dt 2	1

d2f20 + 1t4K ) 
f
20 = 0
	 (4.56.b)

dt 2	1

2d f11	

d
+ 

( 1+K )fll	 1+K -f20dt0 - f10 dt01j	 (4.56.c)
dt 2	1	 1

d2f 21+ ( 1+4K )f 21	 1t4K fl0ddt0]	
(4.56.d)

dt 2	1	 1

with initial conditions

f10 (0) = 1	 fi1(0) = 0



df
dt0

(0) = 0
df

dt=( 0) = 0

f20(0) = 0 f21(0) = 0

df20(0)

dt	 - 0

df21(0)

dt	 - 0

65

e

The first-order equations (4.56.a and b) can be solved by assuming the

usual assumed solution for linear differential equations. Doing this

and applying the appropriate initial conditions, the results for the

first-order terms are

1f10 = cos 1+K1 t

f20 = 0
	

(4.57)

Substituting (4.57) into the right-hand side of (4.56.c) the equation

becomes a homogeneous linear differential equation. Solving in the

usual manner and applying the appropriate initial conditions

f11 = 0
	

(4.58)

Substituting (4.57) into the right-hand side of equation (4.56.d), the

resulting equation becomes a linear differential equation with a particu-

lar solution. By assuming an appropriate homogeneous and particular

solution and evaluating the constants using the appropriate initial condi-

tions, the result becomes

IL_ .
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1^ 2.	 1	 2
f =	 sin-- t +	 1	 sin	 t . (4.59)
21	 24K1	 1	

24K1	 1	
_1+

 substituting equations ( 4.57), (4.58), and (4.59) into the

assumed perturbation solution and letting K1 = EK, the resulting equations

become

fl = cos	 1 t	 ( 4.60.a)
1

f = - 1^ ( 1+	
sin	 2 t - sin 

2 
t]	 (4.60.b)

2 24K 1+Ke	 l^	 1

Recall that in the two-variable perturbation method, f l and f2 expressed

in terms of the perturbation variables were

fl = A1(n) cos ^ + B1(n) sin	 (4.61.a)

f2 = A3(n) cos 2E + B 3(n) sin 2& .	 (4.61.b)

By transforming equation (4.60.a) into perturbation variables and expand-

ing the argument of the cosine function by the Taylor series and using

appropriate sum and difference trigonometric identities f l can be

expressed as

z

fl = cos 
2 

Kn cos & + sin 
2 

Kns in &
	

( 4.62)

Therefore, comparing this to equation (4.61.a), the functions Al and B1

must be

r



A1(n)

Bl(n)

By similar procedure, it can be shown that evaluating equation ( 4.60.b)

and comparing it to equation (4.61.b), the results are

A3 (n) = 24-sin 4Kn - sin Kn]

B3	 24K= 2-cos Kn - cos 4Kn]
	

(4.64)

To show the validity of equations (4.63) and (4.64), the problem is now

solved using equations (4.12) which are derived from equations (3.21) by

the use of the two-variable perturbation method. To reproduce the condi-

tions imposed on the problem just discussed, let there be no combustion

(i.e., n = 0), let there be no steady-state burning rate (i.e., a = 0),

and let there be only standing waves existing (i.e., A 2 = A4 = B2 = B4 =

0). Imposing these conditions on equations (4.12), the resulting equa-

tions become

dA
dnl t 2 KB1 t 2 A

1 
A

3
+ B1B 3 ] = 0

dn l 2 KA
1 + 2{ A 1B3 - B 1A3] = 0

dA
d3 + 4KB^ + , R i g - Al 2 7 = 0



68
4

dB3-WA - l AB =0	 (4.65)3 4 1 1

In the previous solution it was assumed that the frequency correction

terms were larger than the gas -dynamic ,nonlinearities. To be consistent

with this assumption the following procedure is used. By a change of .

variable n = C/K, equation ( 4.65) can be rewritten as

dA

d1+2B1+2K [AIA3+BJB33 =0

dB

dt 2 Al + 2K
 [Al B3 - BlA3 3 = 0

+ 4B3 + 2K 
[B12 - Al2 ] = 0

^3 - 4A3 - 4K A1 B 1
= 0	 (4.66)

Assuming a straightforward expansion of the form

Al = AD O+ K All +	
.

Bl B10 + KB11+

A3'A30+KA31+

B 3 - B30 + K B31 +	
(4.67)

Y



then substituting these expressions into th

terms of 0(l) and O(1/K), the resulting sop

d;0 t 
2 

B10 0	 (4.68.a)

dAd30 + 4B30 = 0	 (4.68.c)

dB30 - 
4A30 = 0	 (4.68.d)

dA
11 +

 1 B = - 1[A A + B B ]	 (4.68.e)=C2 11	 2 10 30 10 30

ddC	 2 Ail	 2 A,OB30 - B10A301	 ( 4.68.f )

dA	
2	 2d{1 + 4B31 - BB 10
 - A10

^^ 1 - 4A31 4{AlOB10^

with the initial conditions

A10(0) = 1	 B10(0) = 0

(4.68.8)

(4.68.h)

A11(0) = 0	 B11(0) = 0

IL _"



A31(0) s 0	 B31(0) s 0 .
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Since the first-order equations are coupled, differentiate equations

(4.68.a and c) once with respect to C then substitute equations ( 4.68.b

and d) into these equations resulting in

d?A0 + 4 A10 0d^2

d2---30 + 16A30 = 0	 (4.69)
dC2

As can be seen, equations (4.69) are linear differential equations

which can be evaluated by the usual manner. In doing so and applying

the appropriate initial conditions, the resulting first-order modal ampli-

tudes are

A10 2 cos 2^ = cos 2 n

A30 = 0	 (4.70)

Knowing values for 
A10 

and A30 , substitute these values into equations

(4.68.b and d) and apply appropriate initial conditions. The results

become

B "i0 sin y^ z sin 2 n

B30 2 0
	

(4.71)



Substituting the results of (4.70) and (4.

equations ( 4.68.e-h). the resulting equat^ __--

dA 11
	

2 Bll	 (4.72.a)

dB
=C 

2 
Ali	 (4.72.b)

dA
={1 + 4B31 = 8 cos Z	 (4.72.0

dB 31- 4A31 = B si n G	 (4.72.d)

Since equations (4.72.c and d) are coupled, differentiate both equations

once with respect to 4 and substituting equations (4.72.c and d) into the

appropriate terms of the new set of equations, the resulting equations are

d 21 + 16A 	 $
d^2 	

sin

dtB31 + 16B31 = 8 cos	 {	 (4.73)
d;z

Equations (4.73) are a set of linear differential equations with homo-

geneous and particular solutions. Solving these equations in the usual

manner and using the appropriate initial conditions, the resulting modal

amplitudes are

A31 = 24 (sin4; - sink) = ^ sin4Kn - sinKn)
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B31 = ^ cosC - cos4C) • ^ cosKn - cos4K0'-.	 (4.74)

In a similar manner, the results for the modal amplitudes 
A11 

and 
811 

can

be determined to be

A11a0

B11 : 0
	

(4.75)

evaluated with the appropriate initial conditions. Therefore, substitut-

ing the results of (4.70), (4.71), (4.73), and (4.74) into the assumed

perturbation solution of (4.67), the resulting modal amplitudes become

Al n cos 2 Kn t	 .

B 1 = sin 2Knt	 .

A 3 = 2
	
sin 4Kn - sin Kn) t	 .

E3 = 24 sin 4M- sin Kn) t	 .
	 (4.76)

It can be seen that equations (4.76) are identical to equations (4.63) and

(4.64). This indicates that the two-variable method produces the correct

solution. Equations (4.60) indicate that the presence of K changes the

frequency of each of the first two acoustic modes and further renders the

ratio of the second frequency to the first a non-integer number in general.
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Equations ( 4.76) show haw this effect manifests itself in the two-variable

perturbation solution.

These results can be used in another way. If the nonlinear terms

are neglected in (4.55 .a), the results are

d2f
{1tK1 )	 1 t fl n 0

dt2

d2f	 df
(1t4K1)	 2 t 

4f? - cfl dtl = 0
dt2

	

df
1
(0)	 df2(0)

f1	 dt
2 1, 	

dt	 - 0•	 f2(0) = 0,	 dt	
: 0. (4.77)

It can be easily shown that equations (4.60) constitute the exact solution

of equation (4.77). If the corresponding terms are neglected in eq+,rations

(4.65), the result, are

dA 
1 t 2 1KBa 

dl 
-Z

n	
KA1= 0

dA
a 3 t 4KB 3 t -11 Bl2 - A^ z ) = 0

d
B3 - 4KA3 - 4 A

1 
B
1

= 0
	

(4.78)

where

L .
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A1(0) = 1

B1(0) = 0

A3 (0) .= 0

B3 (0) = 0 .

It can be shown that equations (4.76) are the exact solution of equation

(4.78). These facts were used to check the accuracy of the computer pro-

grams to be discussed later.

In the remainder of this thesis, a comparison of the magnitudes

of the modal amplitudes will be represented in graphical and tabular

form. Under a given set of conditions, the acoustic modal amplitude pro-

gram, the general perturbation program, and the analytical cases that

were programmed will be used and results compared. Varying certain con-

ditions will show their effect on the changes in magnitude of the modal

amplitudes through a set range of time which is related to maintaining

stability. From these various cases, it will be determined which param-

eters and conditions have the greatest effect in changing modal ampli-

tudes and which in turn affect the stability cri'Leria for combustion

by the methods discussed above.
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In this chapter, results are presented botr in graphical and

tabular form which are representative of the results generated by the .

programs listed in the Appendices B through E. From these representative

sets of results, basic observations will be made to observe which

parameters or conditions have the greatest effects on the problems of

stability.

In Figures 3 and 4, modal amplitudes F 1 and F 2 are graphically

represented versus time for a stable standing wave case. For these

figures, F 1 (0) = 0, F1 '(0) = 1, F 2 (0) = 0, F2 ^(0) = 0, G1 (0) = 0, G1'(0)

0, G2 (0) = 0, G 2 '(0) = 0, n = 35, i = 1, K = 0, e = 0.1 and w = 0.1.

The step size used was 0.1. Experimentation showed that this was a small

enough step size to produce accurate results and was used throughout.

From these figures, one notices that both the first and second order modal

amplitudes decrease in amplitude with increasing time. Also, F 2 , the

second order modal amplitude, tends to oscillate at twice the frequency of

F1 . These figures are based upon one set of parametric values; however,

these figures represent qualitatively the results obtained using a wide

variety of initial conditions and parametric values. In Figures 5 through

8, modal amplitudes F 1 , F21 G 1 , and G2 are grail' ally represented versus

time for a stable traveling wave case. For these figures, F 1 (0) = 0,

F1 '(0) = -1, F2 (0) = 0, G 1 (0) = 1, G1 '(0) = 0, G2 (0) = 0, G 2 1 (0) = 0,

n = 15, i = 1, K = 0, w = 0.1 and e = 0.1. The general shape of the
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curves and the relative frequencies of oscillation are qualitatively

similar to the stable standing wave case.

In Figures 9 and 10, modal amplitudes F 1 and F2 are graphically

represented versus time for an unstable standing wave case with the

same conditions as the stable case except that n = 50. As can be seen,

the maximum amplitude of F1 starts to decrease then increase dramatically

for increasing time. The maximum amplitude of F2 increases continuously.

In Figures 11 through 14, modal amplitudes F1 , F2 , G1 , and G2 are

represented versus time for an unstable traveling wave case. Again, the

conditions are the same as for the stable traveling wave case except that

n = 30. Drastic increases in amplitudes are observed for all the modal

amplitudes shown as time increases. The behavior is similar to the

unstable standing wave case. The period of time for traveling waves to

become unstable is about one-half the period of time for standing waves

to become unstable. Thus, it seems that traveling waves are less

stable than are standing waves.

In Tables 1 and 2, a comparison of results is presented for modal

amplitudes F1 and F2 for a stable standing wave case. For these cases,

F1 (0) = 0, F1 '(0) = 1, F2 (0) = 0, F2 '(0) = 0, G1 (0) = 0, G1 '(0) = 0,

G2 (0) = 0, G2 '(0) = 0, n = 60, E = 0.1, and w = 0.1. These tables

quantitatively show the effect of neglecting gas dynamic non-linearities

on the accuracy of the computations. Also, a comparison can be made

between the exact solution method (Appendix B program) and the perturbation

solution method (Appendix C program). From Table 1, one can observe that

the effect of neglecting gas-dynamic nonlinearities is small where

quantitatively comparing values of the modal amplitude F 1 . Even though,

quantitatively, the values for the exact solutions and perturbation

r.

-,.
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.e 1. Comparison of, Results for Fl Showing Effects of Gas Dynamic

Ix 	 - (Fl =O, F1' =1, F2 =0,F2 t =O,Gl =0,G
1 =0, G2 20,

= 0) - Stable Cases (n = 60) - Standing Waves

i = 1
K=1

i = 0
K=1

t Exact Perturbation Exact Perturbation
Solution Solution Solution Solution

0.2 0.19699 .0.18712 0.19699 0.18702
0.4 0.38335 0.36426 0.38336 0.36386
0.6 0.55252 0.52540 0.55259 0.52462
0.8 0.69856 0.66518 0.69885 0.66400
1.0 0.81627 0.77905 0.81719 0.77758
1.2 0.90132 0.86340 0.90354 0.86186
1.4 0.95043 0.91572 0.95489 0.91443
1.6 0.96159 0.93461 0.96936 0.93399
1.8 0.93432 0.91986 0.94632 0.92040
2.0 0.86985 0.87244 0.88656 0.87466
2.2 0.77125 0.79443 0.79242 0.79884
2.4 0.64330 0.68895 0.66783 0.69602
2.6 0.49211 0.56003 0.51822 0.57016
2.8 0.32469 0.41247 0.35021 0.42593
3.0 0.14827 0.25167 0.17115 0.26856
3.2 -0.03017 0.08340 -0.01142 0.10366
3.4 -0.20430 -0.08633 -0.19032 -0.06300
3.6 -0.36859 -0.25158 -0.35912 -0.22566
3.8 -0.51829 -0.40659 -0.51242 -0.37879
4.0 -0.64917 -0.54604 -0.64583 -0.51727
4.2 -0.75738 -0.66519 -0.75583 -0.63655
4.4 -0.83921 -0.76006 -0.83953 -0.73278
4.6 -0.89118 -0.82756 -0.89450 -0.80297
4.8 -0.91029 -0.86556 -0.91868 -0.84504
5.0 -0.89444 -0.87297 -0.91049 -0.85789
5.2 -0.84300 -0.84979 -0.86909 -0.84143
5.4 -0.75726 -0.79704 -0.79483 -0.79656
5.6 -0.64071 -0.71679 -0.68959 -0.72514
5.8 -0.49885 -0.61200 -0.55708 -0.62988
6.0 -0.33868 -0.48646 -0.40279 -0.51427
6.2 -0.16794 -0.34466 -0.23365 -0.38244
6.4 0.00574 -0.19159 -0.05742 -0.23901
6.6 0.17554 -0.03259 0.11809 -0.08992
6.2 0.33582 0.12685 0.28578 0.06271
7.0 0.48221 0.28126 0.43974 0.21080
7.2 0.61134 0.42538 0.57552 0.35042
7.4 0.72042 0.55435 0.68999 0.47703
7.6 0.80682 0.66387 0.78099 0.58653
7.8 0.86778 0.75032 0.84693 0.67550
8.0 0.90042 0.81090 0.88644 0.74121



90 ♦1

Table 2. Comparison of Results for F2 Showing Effects of Gas Dynamic

Index (i)- (Fl =0,F1',=1,F2 =O,F2 1 =0,G1=0,G=O,G2=0,

G2
 
 = 0) - Stable Cases (n = 60) - Standing Waves

3=1
K=1

i=0
K=1

t Exact Perturbation Exact Perturbation
Solution Solution Solution Solution

0.2 0.00012 -0.00485 0.00003 -0.00253
0.4 0.00113 -0.01309 0.00043 -0.00938
0.6 0.00422 -0.02223 0.00205 -0.01865
0.8 0.01060 -0.02944 0.00602 -0.02784
1.0 0.02110 -0.03215 0.01336 -0.03424
1.2 0.03582 -0.02854 0.02471 -0.03553
1.4 0.05397 -0.01795 0.03497 -0.03023
1.6 0.07375 -0.00104 0.05816 -0.01798
1.8 0.09260 0.02022 0.07742 0.00026
2.0 0.10749 0.04283 0.09521 0.02232
2.2 0.11543 0.06317 0.10863 0.04514
2.4 0.11407 0.07764 0.11493 0.06516
2.6 0.10215 0.08319 0.11198 0.07891
2.8 0.07988 0.07788 0.09878 0.08357
3.0 0.04909 0.06128 0.07573 0.07745
3.2 0.01309 0.03461 0.04478 0.06031
3.4 -0.02375 0.00071. 0.00929 0.03352
3.6 -0.05653 -0.03632 -0.02639 -0.00006
3.8 -0.08051 -0.07164 -0.05749 -0.03640
4.0 -0.09180 -0.10031 -0.07945 -0.07083
4.2 -0.08798 -0.11801 -0.08865 -0.09863
4.4 -0.06850 -0.12165 -0.08296 -0.11571
4.6 -0.03490 -0.10993 -0.06211 -0.11921
4.8 0.00924 -0.08353 -0.02786 -0.10793
5.0 0.05868 -0.04515 0.01610 -0.08257
5.2 0.10711 0.00077 0.06458 -0.04571
5.4 0.14796 0.04864 0.11144 -0.00152
5.6 0.17534 0.09236 0.15041 0.04468
5.8 0.18493 0.12615 0.17593 0.08715
6.0 0.17466 0.14534 0.18393 0.12042
6.2 0.14513 0.14699 0.17255 0.14004
6.4 0.09957 0.13035 0.14243 0.14314
6.6 0.04352 0.09700 0.09680 0.12888
6.8 -0.01592 0.05073 0.0411 0.09857
7.0 -0.07104 -0.00295 -0.01771 0.05557
7.2 -0.11448 -0.05745 -0.07205 0.00488
7.4 -0.14027 -0.10594 -0.11471 -0.04743
7.6 -0.14458 -0.14223 -0.13988 -0.09498
7.8 -0.12628 -0.16158 -0.14384 -0.13189
8.0 -0.08716 -0.16128 -0.12556 -0.15352
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solutions are not exactly the same, the order of magnitude and behavior

of results is similar. From Table 2, the same observations can be made

for the behavior of F2. There is, however, more error, quantitatively,

between the results for exact and perturbation methods and a region of

qualitative inaccuracy between the exact and perturbation solutions exists

near t = 0. This takes the form of a difference in sign of F2 between

results from the exact solution as compared to the perturbations solution.

This discrepency occurred also in the other calculations performed (not

shown) and will be discussed in more detail later in this chapter.

In Tables 3 and 4, a comparison of results is presented for :nodal

amplitudes F1 and F2 for a stable standing wave case. The initial

conditions for the results in these tables are F 1 (0) = 0, F1 '(0) = 1,

F2 (0) = 0, F 2 '(0) = 0, G1 (0) = 0, G1 ' (0) = 0, G2 (0) = 0, G2 '(0) = 0,

n = 40, e = 0.1, and w = 0.1. However, these tables quantitatively

present the effect of deviations of the ratio of the second acoustic

frequency to the first from the integer value of 2 (this is controlled

by the parameter K). These results show that solutions for finite values

of K are qualitatively similar to those for K = 0. This indicates that

the ratio of the second acoustic frequency to the first does not have

to be an integer in order to produce the type of behavior observed here.

A ratio near an integer value will lead to similar results. Tables 3

and 4 also allow a comparison to the results generated by the program

in Appendix D for the approximate analytical solution (4.31). These

results presented in the last column of Tables 3 and 4 can be compared

to the fourth column in each of these tables to determine the accuracy

of (4.31). These comparisons present further evidence that the neglect

of gas dynamic nonlinearities does not have an important qualitative

effect.
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Table 3. Comparison of Results for F1 Showing Effects of the Correction

Variable (K) - (F1 a 0, F1 ' a 1s F2 a 0, F2 ' = 0, G1 a 0, G1' n 0,

G2 a 0, G2 ' = 0) - Stable Case (n = 40) - Standing Waves
i

i=i
K=1

i=i
K=0

i=0
K=0

t Exact Perturbation Exact Perturbation Analytic
Solution Solution Solution Solution Solution

0.2 0.19699 0.18707 0.19670 0.19678 0.19671
0.4 0.38335 0.36396 0.38172 0.38210 0.38186
0.6 0.55254 0.52460 0.54795 0.54890 0.54843
0.8 0.69867 0.66358 0.68903 0.69093 0.69029
1.0 0.81667 0.77635 0.79957 0.60302 0.80234
1.2 0.90247 0.85935 0.87537 0.88124 0.88075
1.4 0.95312 0.91014 0.91361 0.92306 0.92304
1.6 0.96699 0.92744 0.91310 0.92740 0.92820
1.8 0.94390 0.91120 0.87443 0.89+-58 0.89666
2.0 0.88523 0.86255 0.80001 0.876716 0.83027
2.2 0.79388 0.78374 0.69393 0.72690 0.73221
2.4 0.67411 0.67805 0.56163 0.59954 0.60682
2.6 0.53129 0.54969 0.40948 0.45016 0.45947
2.8 0.37154 0.40358 0.24432 0.28905 0.29627
3.0 0.20133 0.24520 0.07300 0.11102 0.12386
3.2 0.02712 0.08039 -0.09782 -0.06484 -0.05085
3.4 -0.14491 -0.08439 -0.26190 -0.23547 -0.22097
3.6 -0.30901 -0.24474 -0.41335 -0.39410 -0.37989
3.8 -0.45992 -0.39354 -0.54662 -0.53453 -0.52152
4.0 -0.59287 -0.52617 -0.65660 -0.65139 -0.64055
4.2 -0.70357 -0.63813 -0.73872 -0.74028 -0.73261
4.4 -0.78821 -0.72574 -0.78928 -0.79800 -0.79446
4.6 -0.84362 -0.78623 -0.80583 -0.82264 -0.82407
4.8 -0.86746 -0.81785 -0.78760 -0.81364 -0.82069
5.0 -0.85849 -0.81988 -0.73571 -0.77179 -0.78490
5.2 -0.81682 -0.79266 -0.65317 -0.69920 -0.71852
5.4 -0.74409 -0.73757 -0.54464 -0.59917 -0.62456
5.6 -0.64352 -0.65697 -0.41585 -0.47611 -0.50704
5.8 -0.51967 -0.55405 -0.27311 -0.33525 -0.37090
6.0 -0.37816 -0.43279 -0.12272 -0.18253 -0.22172
6.2 -0.22516 -0.29772 0.02937 -0.02427 -0.06554
6.4 -0.06694 -0.15382 0.17767 0.13305 0.09140
6.6 0.09056 -0.0063 0.31714 0.28307 0.24291
6.8 0.24192 0.13957 0.44298 0.41977 0.38308
7.0 0.38242 0.27867 0.55061 0.53776 0.50650
7.2 0.50795 0.40617 0.63563 0.63247 0.60850
7.4 0.61493 0.51774 0.69408 0.70029 0.68527
7.6 0.70017 0.60967 0.72786 0.73878 0.73407
7.8 0.76090 0.67898 0.72020 0.74667 0.75327
8.0 0.79476 0.72355 0.68609 0.72400 0.74234



i=1
K= 1

i=1
K- 0

i=0
K- 0

t Exact Perturbation Exact Perturbation Analytic
Solution Solution Solution Solution Solution

0.2 0.00011 -0.00400 0.00015 -0.00419 -0.00192
0.4 0.00099 -0.00996 0.00136 -0.01035 -0.00696
0.6 0.00354 -0.01599 0.00479 -0.01597 -0.01337
0.8 0.00860 -0.02013 0.01141 -0.01856 -0.01885
1.0 0.01665 -0.02071 0.02149 -0.01626 -0.02113
1.2 0.02761 -0.01669 0.03443 -0.00838 -0.01856
1.4 0.04072 -0.00793 0.04866 0.00438 -0.01059
1.6 0.05458 0.00479 0.06180 0.01995 0.00208
1.8 0.06726 0.01983 0.07113 0.03529 0.01749
2.0 0.07663 0.03491 0.07416 0.04696 0.03278
2.2 0.08072 0.04750 0.06910 0.05185 0.04472
2.4 0.07803 0.05521 0.05549 0.04793 0.05038
2.6 0.06793 0.05622 0.03439 0.03468 0.04776
2.8 0.05081 0.04957 0.00841 0.01343 0.03626
3.0 0.02816 0.03542 -0.01867 -0.01282 0.01697
3.2 0.00244 0.01507 -0.04246 -0.03978 -0.00745
3.4 -0.02323 -0.00917 -0.05871 -0.06265 -0.03313
3.6 -0.04544 -0.03425 -0.06410 -0.07695 -0.05561
3.8 -0.06099 -0.05679 -0.05687 -0.07938 -0.07067
4.0 -0.06735 -0.07356 -0.03727 -0.06854 -0.07507
4.2 -0.06307 -0.08196 -0.00764 -0.04530 -0.06722
4.4 1	 -0.04802 -0.08040 0.02778 -0.01278 -0.04759
4.6 f	 -0.02355 -0.06854 0.06351 0.02408 -0.01872
4.8 0.00767 -0.04745 0.09363 0.05926 0.01509
5.0 0.04187 -0.01945 0.11279 0.08668 0.04845
5.2 0.07470 0.01210 0.11719 0.10127 0.07573
5.4 0.10173 0.04330 0.10529 0.09987 0.0920E
5.6 0.11915 0.07013 0.07824 0.08191 0.09414
5.8 0.12425 0.08905 0.03976 0.04959 0.08095
6.0 0.11586 0.09745 -0.00434 0.00764 0.05395
6.2 0.09462 0.09402 -0.04711 -0.03736 0.01700
6.4 0.06286 0.07894 -0.08154 -0.07807 -0.02424
6.6 0.02438 0.05389 -0.10178 -0.10757 -0.06318
6.8 -0.01630 0.02182 -0.10409 -0.12058 -0.09336
7.0 -0.05322 -0.01335 -0.08754 -0.11433 -0.10952
7.2 -0.08237 -0.04728 -0.05423 -0.08921 -0.10854
7.4 -0.0995E -0.07576 -0.00908 -0.04879 -0.09001
7.6 -0.10237 -0.09523 0.04092 0.00093 -0.05639
7.8 -0.09018 -0.10322 0.08777 0.05190 -0.01267
8.0 -0.06428 -0.09872 0.12375 0.09586 0.03434
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Table 4. Comparison of Results for F2 Showing Effects of the Correction

Variable ( K) - (F1 = O fj, , F1 ' = It F2 : 0 9 F2 r = 0 1, G1 s 0 6 G1 ^ 2 O,

G2 = 0, G2^ = 0) - Stable Case (n a 40) - Standing Waves
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In Tables 5 and 6, a comparison of results are presented for modal

amplitudes F2 and F2 for an unstable standing wave showing the effect of

neglecting gas-dynamic nonlinearities. It can be seen that the gas

dynamic noainearities have little qualitative effect on the results.

In Tables 7 and S, a comparison of results are presented for modal

amplitudes F1 and F2 for an unstable standing wave case showing the effects

of K. The results for zero and non-zero are qualitatively similar.

These tables are representative of the cases that were investigated

in the course of this research. Only cases involving standing waves were

presented. The same behavior, however, can be observed for the cases

involving traveling waves.

In Table 9, a comparison of stability boundaries is presented

based upon the interaction index (n) which is a measure of the strength

of the combustion process. For standing waves and the given conditions

shown, the stability limit for a process with gas dynamic nonlinearities

considered and K = 0 is between 45-50. When both gas dynamic non-

linearities and the correction variable are considered, the stability

limit is increased to 67.5-69. Finally, when considering only the

correction variable with no gas-dynamic non-linearity effect, the stability

limit is 72-72.5. The results show that the neglect of gas dynamic

nonlinearities slightly underestimates the stability boundary and that

the increasing K increases the stability limit.

In Table 10, a comparison of stability boundaries is presented

based upon the interaction index for traveling waves. These results provide

additional confirmation of the conclusions discussed in the previous

paragraph and also illustrate the fact that standing waves are roughly

twice as stable as traveling waves. This is consistent with the

;-
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Table S. Comparison of Results for F1 Showing Ef!
Index (i) - (F1 = 0 0 F1  = 1, F2 = 0, F2 ' = 0, G1

G2 ' = 0) - Unstable Case (n = 75) - Standing Waves

i = 1
K = 1

i=0
K = 1

t Exact Perturbation Exact Perturbation
Solution Solution Solution Solution

0.2 0.19699 0.18717 0.19699 0.18703
0.4 0.38335 0.38215 0.38336 0.36402
0.6 0.55250 0.52613 0.55258 0.52513
0.8 0.69847 0.69244 0.69881 0.66518
1.0 0.81592 0.80625 0.81700 0.77974
1.2 0.90030 0.86736 0.90294 0.86535
1.4 0.94803 0.92126 0.95337 0.91952
1.6 0..95671 0.94184 0.96695 0.94089
1.8 0.92557 0.92873 0.94003 0.92921
2.0 0.85572 0.88276 0.87584 0.88529
2.2 0.75039 0.80579 0.77580 0.81106
2.4 0.61484 0.70079 0.64411 0.70941
2.6 0.45593 0.57161 0.48677 0.58410
2.8 0.28147 0.42287 0.31118 0.43963
3.0 0.09945 0.25987 0.12554 0.28107
3.2 -0.08272 0.08829 -0.06194 0.11388
3.4 -0.25864 -0.08588 -0.24371 -0.05620
3.6 -0.42307 -0.25669 -0.41342 -0.22350
3.8 -0.57177 -0.41827 -0.56608 -0.38241
4.0 -0.70107 -0.56512 -0.69790 -0.52773
4.2 -0.80745 -0.69228 -0.80594 -0.63473
4.4 -0.88721 -0.79547 -0.88767 -0.75934
4.6 -0.93641 -0.87123 -0.94056 -0.83825
4.8 -0.95124 -0.91703 -0.96203 -0.88902
5.0 -0.92862 -0.93138 -0.94961 -0.91020
5.2 -0.86710 -0.91381 -0.90146 -0.90121
5.4 -0.76771 -0.86492 -0.81711 -0.86255
5.6 -0.63434 -0.78635 -0.69815 -0.79563
5.8 -0.47368 -0.68071 -0.54872 -0.70274
6.0 -0.29439 -0.55149 -0.37551 -0.58703
6.2 -0.10598 -0.40299 -0.18717 -0.45231
6.4 0.08258 -0.22558 0.00672 -0.30299
6.6 0.26374 -0.06815 0.19691 -0.14391
6.8 0.43198 0.10715 0.37555 0.01979
7.0 0.58355 0.28009 0.53682 0.18290
7.2 0.71613 0.44478 0.67707 0.34025
7.4 0.82779 0.59627 0.79428 0.48686
7.6 0.91635 0.72909 0.88737 0.61813
7.8 0.97878 0.83897 0.95535 0.72996
8.0 1.01111 0.92224 0.99664 0.81891

Oft.
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Table 6. Comparison of Results for F 2 Showing Effect of the Gas

Dynamic Index (i) - (F1 a 0, F1' • It F2 a O, F21 = 0 9 01 a 00

G1' a O, G2 a 0 0 G2 ' a 0) - Unstable Case - (n a 75) - Standing Waves

i a 1
K a 1

i a 0
Kai

t Exact Perturbation Exact Perturbation
Solution Solution Solution Solution

0.2 0.00013 -0.00548 0.00003 -0.00316
0.4 0.00124 -0.01544 0.00054 -0.01172
0.6 0.00473 -0.02691 0.00257 -0.02333
0.8 0.01210 -0.03643 0.00752 -0.03484
1.0 0.02443 -0.04077 0.01670 -0.04288
1.2 0.04197 -0.03749 0.03089 -0.04728
1.4 0.06387 -0.025518 0.04994 -0.03793
1.6 0.08806 -0.005425 0.07263 -0.02258
1.8 0.11143 0.02061 0.0966 0.00033
2.0 0.13027 0.049007 0.1186 0.02813
2.2 0.14082 0.07537 0.13504 0.05696
2.4 0.14005 0.09513 0.14236 0.08237
2.6 0.12628 0.10426 0.13796 0.09995
2.8 0.09967 0.10004 0.12064 0.10606
3.0 0.06242 0.08152 0.09109 0.09851
3.2 0.01860 0.04984 0.05192 0.07688
3.4 -0.02636 0.008166 0.0076 0.04283
3.6 -0.06636 -0.03858 -0.03628 -0.00096
3.8 -0.09548 -0.08436 -0.07362 -0.046816
4.0 -0.10889 -0.12285 -0.09877 -0.09134
4.2 -0.10354 -0.14826 -0.10733 -0.12758
4.4 -0.07873 -0.15626 -0.09688 -0.15016
4.6 -0.03636 -0.14461 -0.06742 -0.15524
4.8 0.01909 -0.11361 -0.02153 -0.14104
5.0 0.08104 -0.06617 0.03583 -0.10827
5.2 0.14148 -0.00758 0.09778 -0.06010
5.4 0.19206 0.055118 0.15638 -0.00186
5.6 0.22528 0.11399 0.20358 0.05954
5.3 0.23565 0.16121 0.23235 0.11651
6.0 0.22067 0.19016 0.23779 0.16168
6.2 0.18130 0.19633 0.21796 0.18888
6.4 0.12201 0.17793 0.17434 0.19397
6.6 0.05019 0.13633 0.11182 0.17547
6.8 -0.02482 0.07595 0.03808 0.13477
7.0 -0.09302 -0.02526 -0.03737 0.07614
7.2 -0.14503 -0.07144 -0.10448 0.006209
7.4 -0.17338 -0.140235 -0.15407 -0.06680
7.6 -0.17347 -0.19368 -0.17900 -0.13401
7.8 -0.14428 -0.22450 -0.17519 -0.18700
8.0 -0.08859 -0.22808 -0.14216 -0.21888

S 
' _ X 	 rt
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Table 7. Comparison of Results for F1 Showing the Effects of the

U

	

	 Correction Variable (K) - (F1 a 0, F1 ' a 1, F2 a 0, F2' a 0, C1 a 0,
GI  

a 0, G2 a 0, G21 a 0) - unstable Cases (n a 70) - Standing Waves

1 i iai 320
K=1 K K a 0

t Exact Perturbation Exact Perturbation Analytic
Solution Solution Solution Solution Solution

0.2 0.19699 0.187155 0.19670 0.19687 0.19675
0.4 0.38335 0.36462 0.38172 0.38261 0.38217
0.6 0.55251 0.52587 0.54791 0.55028 0.54942
0.8 0.69850 0.66615 0.68878 0.69371 0.69249
1.0 0.81604 0.78072 0.79865 0.80767 0.80630
1.2 0.90066 0.86596 0.87280 0.88811 0.88696
1.4 0.94887 0.91928 0.90775 0.93226 0.93184
1.6 0.95842 0.93925 0.90166 0.93878 0.93468
1.8 0.92863 0.92554 0.85477 0.90772 0.91061
2.0 0.86067 0.87904 0.76962 0.84061 0.84612
2.2 0.75771 0.80166 0.65109 0.74802 0.74903
2.4 0.62481 0.69648 0.50590 0.61107 0.62333
2.6 0.46860 0.56735 0.34194 0.45807 0.47407
2.8 0.29658 0.41903 0.16733 0.26849 0.30714
3.0 0.11649 0.25679 -0.01027 0.10616 0.12906
3.2 -0.06441 0.08639 -0.18416 -0.05313 -0.05327
3.4 -0.23973 -0.08618 -0.34860 -0.25962 -0.23280
3.6 -0.40414 -0.25437 -0.49854 -0.42949 -0.40262
3.8 -0.55318 -0.41415 -0.62912 -0.58151 -0.55621
4.0 -0.68301 -0.55829 -0.73533 -0.70960 -0.68766
4.2 -0.78998 -0.68250 -0.81197 -0.80859 -0.79192
4.4 -0.87041 -0.78258 -0.85399 -0.87449 -0.86494
4.6 -0.92055 -0.85525 -0.85736 -0.90458 -0.90388
4.8 -0.93689 -0.89811 -0.82008 -0.89755 -0.90718
5.0 -0.91671 -0.90981 -0.74306 -0.85356 -0.87463
5.2 -0.85886 -0.89005 -0.63045 -0.80213 -0.80736
5.4 -0.76447 -0.83962 -0.48925 -0.66264 -0.70785
5.6 -0.63724 -0.76029 -0.32818 -0.52309 -0.57982
5.8 -0.48340 -0.65486 -0.15634 -0.36111 -0.42807
6.0 -0.31100 -0.52691 0.01809 -0.18308 -0.25635
6.2 -0.12888 -0.38083 0.18852 -0.07645 -0.07712
6.4 0.05445 -0.22156 0.34995 0.10764 0.10864
6.6 0.23170 -0.05445 0.49844 0.37422 0.29176
6.8 0.39723 0.11485 0.63023 0.46032 0.46509
7.0 0.54707 0.28072 0./4089 0.69003 0.62177
7.2 0.67846 0.43759 0.82500 0.81052 0.75551
7.4 0.78917 0.58027 0.87632 0.89873 0.86085
7.6 0.87687 0.70394 0.88888 0.95061 0.93330
7.8 0.93868 0.80457 0.85847 0.96357 0.96962
8.0 0.97109 0.87877 0.78419 0.93647 0.96786
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Table S. Comparison of Results for F2 Showing the Effects of the

Correction Variable (K) - (F1 = 0, 
F1  = 

1 9 F2 = 0, F2 ' = 0, 01 = 09

01 ` r 0 9 G2 
= 0, G2 ' = 0) - Unstable Cases (n = 70) - Standing haves

i=1
K=1

i1
K=0

i=0
K=0

t Enact Perturbation Exact Perturbation Analytic
Solution Solution Solution Solution Solution

0.2 0.00013 -0.00527 0.00017 -0.00562 -0.00336
0.4 0.00120 -0.01466 0.00165 -0.01557 -0.01219
0.6 0.00456 -0.02534 0.00619 -0.02603 -0.02343
0.8 0.01160 -0.03411 0.01544 -0.03276 -0.03305
1.0 0.02332 -0.03789 0.03024 -0.03218 -0.03709
1.2 0.03992 -0.03451 0.05013 -0.02232 -0.03264
1.4 0.06057 -0.02299 0.07306 -0.01862 -0.01865
1.6 0.08330 -0.00396 0.09555 0.021911 0.00367
1.8 0.10517 0.02047 0.11324 0.04915 0.03093
2.0 0.12271 0.04692 0.12170 0.07264 0.05810
2.2 0.13242 0.07126 0.11751 0.08675 0.07947
2.4 0.13150 0.08922 0.09917 •0.067046 0.08978
2.6 0.11839 0.097153 0.06770 0.071414 0.08535
2.8 0.09328 0.11651 0.02679 0.04063 0.06502
3.0 0.05822 0.07467 -0.01761 -0.001408 0.03053
3.2 0.01701 0.04468 -0.05827 -0.04828 -0.01346
3.4 -0.02528 0.00567 -0.08789 -0.09196 -0.06005
3.6 -0,06295 -0.03775 -0.10041 -0.12426 -0.10122
3.8 -0.09049 -0.07994 -0.09221 -0.13827 -0.12919
4.0 -0.10337 -0.11504 -0.06290 -0.12986 -0.13785
4.2 -0.09872 -0.13779 -0.01566 -0.09854 -0.12403
4.4 -0.07590 -0.1442 0.04299 -0.04785 -0.08825
4.6 -0.03665 -0.13261 0.10404 0.01493 -0.03490
4.8 0.01487 -0.1032 0.15731 0.07988 -0.02828
5.0 0.07254 -0.05894 0.19315 0.13602 0.09131
5.2 0.12595 -0.00478 0.20424 0.17311 0.14357
5.4 0.17637 0.05266 0.18706 0.183575 0.17558
5.6 0.20783 0.10617 0.14284 0.163922 0.16070
5.8 0.21824 0.14862 0.07764 0.11562 0.15640
6.0 0.20519 0.17409 0.00147 0.04509 0.10495
6.2 0.16949 9.17865 -0.0733 -0.03703 0.03331
6.4 0.11514 0.16089 -0.13397 -0.11757 -0.04784
6.6 0.04883 0.12229 -0.16972 -0.182899 -0.12564
6.8 -0.02090 0.06705 -0.17346 -0.22122 -0.18709
7.0 -0.08483 0.00165 -0.14308 -0.22468 -0.22125
7.2 -0.13429 -0.06594 -0.08205 -0.19089 -0.22111
7.4 -0.16228 -0.12723 0.00095 -0.12367 -0.18495
7.6 -0.16442 -0.17433 0.09312 -0.03255 -0.11640
7.8 -0.13960 -0.20087 0.17949 0.06839 -0.02652
8.0 -0.09020 -0.210-57 0.24522 0.16276 0.07753
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Table 9. Comparison of Stability Boundaries Based on the Interaction

Index (n) - 
(FI Ot F1' 

a 1. F2 a 0 0 F2
 
 a 0, G1 = O, GI ! = 00,

G2 = 0, G2 ' s 0) - Standing Haves - Epsilon - 0.1

Stability Boundaries

Gas Dynamic Index Exact Solution Perturbation Solution
Correction Variable n - Stable - Unstable n - Stable - Unstable

i = 1 67.5 - 69 67.5 - 69
K= 1

1 = 0 72 - 72.5 72.5 - 73
K=1

i=1
K=0 45 -50 45-50
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Table 10. Comparison of Stability Boundaries Based on the Interaction

Index (n) - (F 1 = 0 9 F1 ' _ -1 t F2 = 0• F2 ' = 0, G1 = I t G1 ' = 0,

G2 = 0 9 G2 ' • 0) - Traveling Naves - Epsilon - 0.!

Stability Boundaries

Gas Dynamic Index Exact Solution Perturbation Solution
Correction Variable n - Stable - Unstable n - Stable - Unstable

i=1
K = :7.5 - 28 31.5 - 32

i=0
K = 1 30 - 31 36.35 - 36.5

i=1
K r 0 25 - 30 25-30
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approximate analytical stability equations (4.31) and (4.52). The

perturbation method tends to predict slightly higher stability limits

than the exact solution method for both standing and traveling waves.

Within the accuracy of the tabulated values, this is apparent only in

the first two rows of Table 10.

In Table 11, a comparison of the effect of different initial

conditions imposed on the stability boundaries for both standing and

traveling waves is presented. From the results of two sets of initial

conditions for each case, it can be seen that the varying of initial

conditions has no significant effect on the stability boundaries for

both standing waves or traveling waves.

In Table 12, the. variation of the stability limit with a is

presented for standing waves. From Table 12, the results show that the

smaller the term epsilon the greater the stability limit. Therefore,

the order term has a significant effect on the interaction index. In

Chapter 4, a relation was proposed for the case of i = 0 and K = 0

which was n = C/e where C is a constant. Assuming the validity of the

relation, the values for this constant are given for each given epsilon

and interaction index. This shows that, in general, C is a weak function

of E.

In Table 13, a comparison of the effect of E is presented for

traveling waves when both gas dynamic nonlinearities and correction

variables are considered. Again, the results show that the smaller the

term epsilon, the greater the stability limit. The perturbation method

again predicts slightly greater stability limits than does the exact

solution method. Therefore, again, the order term has a strong effect

concerning the stability of combustion.

U V
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Table 11. Comparison of the Effect of Different Initial Conditions

Imposed for Standing and Traveling Waves for i = i and K = 1

Epsilon = 0.1

(a) Standing Waves - 1. F 1 = 0, F1 ' = 1, F2 = 0, F2 ' = 0

G1 = 0, G1 # = 0, G2 = 0, G2 ' = 0

2. F1 = 1, F1 ' = 0, £2 = 0, F2 ' = 0

G1 =0,G,' = 0,Gq=0,Gq' =0

Initial Condition
Sets

Stability Boundaries

Exact Solution
n - Stable - Unstable

Perturbation Solution
n - Stable - Unstable

1. 67.5 - 69 67.5 - 69

2. 65 - 70 65 - 70

(b) Traveling Waves - 1. F1 = 0, F1' _ -1, F2 = 0, F2' = 0

G1 = 1, G1' = 0, G2 = 0, G2 ' =0

2. F1 =1, F1 ' =0,F2 =0, F2 ' =0

G1 = 0, G1 ' _ -1, G2 = 0, G2 ' = 0

Initial Condition
Sets

Stability Boundaries

Exact Solution
n - Stable - Unstable

Perturbation Solution
n - Stable - Unstable

1. 27.5 - 28 31.5 - 32

2. 27.5 - 28.5 31 - 31.5

z_j
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Table 12. Comparison of the Effects of the Order Term

(F1 a 0, F1 ' = i,F2 2 O i F2 t =0, G1 = 0, G1' a 0, G2

G-2 ' a 0) - Standing Waves - when i z i, K a 1

Epsilon

Stability Boundaries

Exact Solution
n - Stable - Unstable

Perturbation Solution
n - Stable - Unstable

Constant
C = ne

0.05 107.5 - 110 107.5 - 110 5.5

0.1 67.5 - 69 67.5 - 69 6.9

0.2 48.5 - 49.5 48.5 - 49.5 9.8
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Thus, from these representative tables of results, it is observed

that the correction variable is important in the stability of standing

waves, but does not play a major role in the stability of traveling waves.

It is observed that the gas dynamic nonlinearities seem to have little

influence on the stability of either standing or traveling waves. It

is observed that initial conditions of the modal amplitudes have little

or no influence in the stability of either standing or traveling waves.

And finally, it is observed that the order term epsilon and,the inter-

action index governing the strength of combustion in the process are

strongly coupled thus affecting the limits of stability.

Before completing this chapter, it is desired to investigate the

sign discrepancy mentioned previously between the exact and perturbation

solutions for f which occur near t = 0. For simplicity, it will be

assumed that i = K = 0 and that for t << 1 the first modal amplitude can

be represented with sufficient accuracy by f 1 = sint. Then, the

equation for f2 will be solved and the result simplified for t << 1.

This will be done first for w = 0 and then for w $ 0. For w = 0,

(3.21) leads to

d2f
dt22 + 4f2 = ewn 11 - cos2t]

with initial conditions

f2 (0) = 0

f2 1 (0) = 0.

(5.1)



f2 = 24 ewnt4 +	 . (5.5)
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Evaluating the homogeneous and particular solutions by the usual manner

and evaluating the constants, the results become

f2 - 16 swn ^1 - cos2t - t sin2t^ . 	 (5.2)

	 t

In terms of the perturbation parameters (4.1), equation (5.2) can be

written as

f2 = 16 wn Ie	 I
(I - cos2E ) - n sin2(5.3)

To the order of approximation a which the perturbation solution should

model, equation ( 5.3) becomes

f2 = - 16w nn sin2E + 0(e).	
(5.4)

By expanding equation ( 5.2) into a Taylor series expansion of three terms,

equation ( 5.2) becomes

which is always positive.

Therefore, the exact method for small time will yield f2 modal

amplitude always as a positive quantity.

By imposing identical conditions to the perturbation equations

(4.12), the result becomes

..4 4^



dB 1
do	 - 16 wn

with the condition

B2 (0) 2 0.

Solving equation (5.6),

tj

-_

d2f	 df
dt22 + 1 

dt 
L + 4f2 = kEwnI 1 - cos2t^ (5.9)

B2	 16 wnn.	 (5.7)

Recalling that f2 = B2 sin2&, the result becomes

t`

f2 = - 16 ;nn sin2t + 0(E)	 (5.8)

which is identical to the result of equation (5.4) for the wave equation

solution. Thus, the perturbation method gives the correct result. It

can be seen that for t << 1 the exact solution predicts a positive f2

and by inspection of equation (5.8), the perturbation method predicts a

negative f2 . This is precisely the behavior observed in the numerical

solutions.

For w 0, a similar analysis can be performed. The appropriate

equation for f2 is now



I

V

with conditions

f2 (0) = 0

f2 '(0) = 0.

Solving the homogeneous and particular solution by the usual manner and

evaluating the appropriate constants the result becomes

f	 e -w/2t _ 1 EWn cos	
w t)2	 ^ 16	 (=2

+ 16 
(
8 - 2	

sin 1	 t + 1 ewn - 1 en sin2t
16 L 1^]	 2	

16	 8	
(5.10)

Expanding (5.10) for small w into the appropriate Taylor series, expanding

and neglecting terms of 0(w) leads to

f2 = 16 ewn C1 - cos2t - t sin2tl	 (5.11)

which is identical to (5.2).

By imposing the identical conditions on the perturbation equation

(4.12), the resulting equation become

dB
1

dn 
2 + ^ aB2 = - 16 wn

with the condition

(5.12)
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Solving equation (5.12) by the usual manner, evaluating the constants,

and transforming the perturbation variables to real time variables

f2 * - 8— 	 a - t, sin 2t.	 {5.13)

This is always negative for t << 1. Expanding the exponential function

by the Taylor series expansion and negle^-t terms of o G) leads to

f2	 16 
n sin 2C t 0(e)
	

(5.14)

which is identical to (5.8).

To observe the behavior of equation ( 5.10) for small time,

expand this equation into a Taylor series of 0(t 4 ). Expanding and

grouping terms according to their order of magnitude, the terms of

0(1), 0(t), 0(t 2 ), O ( t 3 ) vanish. Therefore, f2 is comprised of terms

from 0(t4 ) which is

__ snit	 3m2 w4
- 4	 -

f2 	 24	 1 t B + 64	 {5.15)

Again, for any small timi t, f 2 is always positive since t4 is always

positive. Neglecting higher powers of w, the resulting equation becomes

equation ( 5.5) for the undamped case. Again it can be seen that the

exact and perturbation methods predict opposite signs for f2 when t << 1.

These results are based on approximations and cannot be considered
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definitive. They do, however, lend plausibility to the numerical results

discussed earlier. Zt is believed that this sign discrepancy is due

to the inability of the perturbation solution to accurately represent

the exact solution for t « 1 and not due to any error to the computer

program used to compute the perturbation solution.

i
i



Chapter 6

CONCLUSION AND RECONMENDATIONS

M&

The primary objective of this presentation has been the development

of analytical techniques to solve the problem of combustion instabilities

occurring in an annular combustion chamber. The analytical techniques

used were the modified Galerkin method applied to the acoustic wave

equations which yielded a set of time-dependent modal amplitude equations

and the two-variable perturbation method which yield a set of time-

dependent equations which approximated the behavior of the first set of

equations.	 Both methods produced results which were relatively easy to

apply and used the Runge-Kutta aigorithm which required little computation

time.	 An alternative approach to solve this problem would be a finite

difference approach. 	 However, difficulties can be foreseen in the

development of the finite difference equations modelling the problem

along with the complications occurring due to the boundary conditions of

the problem.	 Thus, the benefits of the methods discussed in this thesis

can be appreciated.

From the numerical and graphical presentation of results in Chapter

= S. the following observations can be made.	 First, the effect of the gas

dynamic	 nonlinearities seems to be small in both methods of analysis for

velocity sensitive combustion.	 This point can be observed from a

quantitative comparison of the tabular results or by observing the effects

of this condition on the stability boundaries.	 Second, the effect of the

111
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correction variable modelling the physical boundaries of the chamber seems

to have a significant effect in both methods of analysis for velocity

sensitive combustion. By including the effect of this correction variable,

a significant increase occurs in the interaction index which is the

criteria for the stability of the system. However, this effect seems to

be more significant for the standing wave case than the traveling wave

cases. The effects of initial conditions for the time dependent equations,

the numerical value for the burning rate and step size of integration,

seem to have very little significance in the measure of the stability

limits of velocity sensiti.,-e combustion. However, the order term epsilon

has a strong effect upon -_he stability of the problem. This is to be

excepted since the order term is the measure of the effect of non-

linearities occurring in the system. The increase in this value corresponds

to a decrease in the stability limit which is physically reasonable.

In this study, the effect of time delay of the combustion procesr

was neglected. However, time delay has been found in other studies to

be an important phenomena in correctly modelling ti.e actual problems of

velocity sensitive combustion. It is recommended that this effect can

be incorporated by including the corresponding terms with j s 1 in the

acoustic wave equations (3.20). A corresponding set of perturbations can

then be derived to account for time delay and both these equations and

equations (3.20) can be numerically evaluated by modifing the existing

Runge-Kutta programs presented in the Appendices. It is also recommended

that an experimental program be developed to measure the effects of

velocity sensitive combustion in an annular combustion chamber. Once

achieving this goal, one could correlate the measurement results to the

analytical results that have been presented to ascertain the validity of

this analysis.
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Since instability of combustion is sensitive to small changes in

engine geometry and operating conditions, a particular engine must be

subjected to a large number of firings before its designers can say

confidently that it is free from instability. With a large engine such

testing can account for a substantial part of development costs. Herein

lies the importance of devising reliable theories of instability aid

inexpensive tests of a propellant's acoustical characteristics. Until

instability of combustion is understood well enough so that it can be

eliminated while an engine is in the design stage, rocket engines must

continue to be intensively tested for stability-- particularly when

the lives of astronauts will eventually depend on safe, reliable

operation of the engine [17].
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APPENDIX A

GENERAL TIME DELAY FUNCTION
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y

1

OENEM TIME DELAY FUNCTION

The development and nature of the time-delay function is of the

same form of the convolution integral for impulse response in vibration

theory. The general form of the time delay function is

t	 dw
w(t) _ J(t - E) 

d^0 
d^	 (A.l)

0

A simple illustration of the time delay function is in the case of a

finite step function J(t).

J(t)

t7

T

(some specific time constant)
S

Figure Al. Step Function J(t)

From the figure, the step function J(t) is defined as

1 t < T
J(t) _

	

0 t > T	 (A.2)

	

Therefore, substituting some time delay (t	 for time t, the result is

119
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1 t - < T
J(t

0 t - < T

or

1 t - T <
J(t - C) =

0 t - T > T

Graphically representing equation (A.2) results in Figure A2.

J(t -)

(A.3)

0 `	 t ,-	 t

Fig•ire A2. Step Time Delay Function J(t - ^)

Substituting into the general time-delay integral the particular step

function in terms of the non-dimensional variable &

j

t - t dw	 (t dw
w(t) = 	 0 d^0 d^ 1 1 d^0 d^ 

	.

0	 t -T

Therefore, simplifying equation (A.3)

W(t) = w0 (t) - w0 (t - T)

where w0 (t) is a generalized function of time and w 0 (t - T) is

functional time delay.

(A.4)

(A.5)

-: x
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APPENDIX B

RUNGE-KUTTA PROGRAM OF THE MODAL

AMPLITUDE WAVE EQUATIONS
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-A0 141TIAL '.'If)I TUNS AA3 C013T4ATS

E'-JADE; TEF4 =?SILOV
IA44R-STEiOY STATE a0ki ;ING PATE
N- IITC.=S TI.V INOEX
A-COFRECTIR") TERM 0AFFLES 4OZZLES,ETC•)
I • (;a5 D YNAMIC INDEX
F:,F 2„1, G?-MODAL A4PLI TJOc:S

;EA) t5,1?) E?,wjA ►i,y,<,I,^i.14X
1;; FCFMAT {5 F 11.4. 15)

(Sol.? ) F1,F1P,F2.FZP,G1•i1P.G2,G2a
1	 r^^,44T (3F1,1.4)

,":1:1 STEP SI7F

UE^: (5.14) ^1
14 FCi M AT (Fi?.5)

'AFIT: ("?0) _*r'4SAn,v,K,I,H
ZC F7" y AT t1X, 4X.^EPSJLTY'.10.4./,1X,4K,•STCaUY•iT^TE

1 EU ,-, 114	 Q AT_(^i3Ar) • .F1:.»,l,tx.»x, • ivT^^a;TI3N INDEX
?-\•,f10.»,/,ix,a^c.•CO+-F^CTIOd JMti1^3LC•^c•,F10.4,/,ix
;, 4X, • G AS )Y `tiAM1 C N0^! • L I y^a	 i'^OEX • ! 1 )'. F1 0. », JJ, 1 X,4X

NFITc (U, 30)	 1,F1P ► F2,^ 2a.;; 1 ,Gi^, i2, ^^?

REPRODUCIBIL iTY OF THE
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c
c
c

c

c

FCR4AT (IxIVITI4L C3U01TJal5'./1.1X,4X,+F1',F1).4,!1, 1Kr fX.+0F1 /DT I,F10o41/01X, 4X, + F2 i ,F10.4, I, 1X14X,+pF2
2/CT',F10.4,/,IX,4X,+I-1 +,Fi0.4,1,1X *4K,+•)G 1/DT + ,F1J.4./3, 1X •4Y, *32 *,FI!).4,/,1X,4X1+ 3 1 2/0T + ,F1' .4, !!fWFITE (6#410)
FCr4AT (IX .3X, + TIS Et, 9X,+F14,10X,+F2*.10X.@G1+,9X,+D2+1,15X , #AC310 , iJX,#ACP2 *, ?X,+4CP3+, 9X#tAC240,/)

-9 Wac-1UTTA AIGORI THM

e3C lUJ J a ION44X

'it vG?, FiP,F2a,G1?,;2afw"1s 'irE?tT,Fl,f?, ,̂^I r G?,FIP,FZP, u1P, i?a)
^1=H+E3tT ,F1,F?,Gi, ^^2,FIP,t'2P, C1 °, a24)
S 1 = H + E4tT, F1,F?, il,?,F1P,F 2P ► G1P,''i2? )T1=H+r^5tT,F1,F?. sl, G? , FiPrF?P,GIP,-i ? a )
U1=!4+ 6tT,FIIF20GI,r?,FIP F2?, GI Q IQ
11=H+ E?( To F1,:..,1;1, %'A?, F 1P,F ZP, ult',;2P )II I =n+ EJ(ToF1,F2, Gl,G2, F1P,F2?,GIP,120)

'c" = +^+c1 i T + Hl2. r F1+P1 J2,,c? 4 ai /2.,U1+^ 1/2. ► 02+51/2. rF1':+Til2.,F?r'4U1l2.,;;1a•vt/2.,^LP•al/Z.)
02=4+_2(T44/Z., FI#PI/?.rF2431/2.,G14P	 51/2.,FiP1+ T: /? .,F^a + UI/?., GIN 'fl /2., ^^P 4W1 /?. )
° L= ^l+c3(T+Hl 2..Ft •P 1 /?.,F2•Jt l2..G1.F 1/2., i24 	 /?.,FIPIf TI !?.,F2?•L1J?.,61?4 V1/?.IG!P4 al/?.)
i?='i+ =4( T4 H/?.. F1 4 P1/ L., F2 • 01 /?.r G1 4; 1/2. r i?+ S1 J?.,FIPI•T1/?.,F?P*U1!?.,GIP•VL12.,;'psWl/?.)
TL=,JrE5(T•H/?.,i'1•?1/?.,F2461/'_'.,G1.Ki1:.•s2.S1J?.,F1P

1411/?.,F.)'*# Ill / .,GIP•VI/L.r32P•^il/Z.)
J2=H+^5(T4 H/2.,F14Pi/2.,F2 •v^ 1 /2.,G1•:1/2,,G2•SI 1Z.,,'1P1+TI!?..F?P4U1/Z.,G1P4V1/2.,G_'P4w1/2.)
12=h+:T(T•H/?.,F1•PI/?.*F24 w;J^.,,l.; 1/2., 5Z4;112.,F2P1411 /?. rF?2.to, 1 / ?. I #;1P.VI12 0 1 G??4 vd/'. )42= 4+:9(T+4/?.,F14 P1/?.,F2•+Yl /?.,(i1441/Z.pa74 i1/2.,F1?1 • T1 / ?.,F»4 U1/?.,;,IP4 V1/?.,G?P• WI/Z. )

=si*cl (T+ H/2., F1. PZ/ ?., F'+0? /2..F,1•A 2/ 2 . ► G?+ i2 /2.,F1Pi• T7/Z.,F??4f1Li ?.,^1P+V2/L.,G2P4WZ/?. )
:3=^^t;2(T•H/2., F1 4 P2/c'..F; 4!1L /2..G1+^ 2/?.•;2. i2/2.,F1P1+T^ /?.rt?P4(1^/?•,G1P4 vL /Z.r^?P•.+12/?.)
•=H<<3(T+H/?•.F1•P,?/?.rF2+

L'	 J'/2.rG1•KL/2.,v'2+^2/2.,F1P14 T./ ?..F?P• 2 /2.,GIP+ JCJ2. ♦ G?".ri?/'.)i3 = H*E4(T4 H/?..F14 P ?/2.,F2• 12/^.,G1 # 42/2.,u24 a2/2.,c1Pt * T2/?.,F?P4U?/ 2 . , GlP 4 V2/?-PGZPO WZ/?.)T 3= ^i +.5tT4 H/'.. F 1 •a 2/?.,F24 32/2.,Gi4;2/2.,rl?. i2 /?.,F1P1+ T?/'..c^P4L2/'.,;1P•V212.,GZP4w212.)
U!=H*;5(T•H/?.,FI#P2/2..F241 	 2-,G1• ./2.,;2+;2/?.,FI

1•i2!?.,F?P4U2/'..GIP4V2/2.,G2P#W?/2.)
JS=H+=TtT+,^/2.rF1+P2/2.,F24^2!?.ri1.42/2.,^?+iZJ2.,F1P

;r

4 tl
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1+ T2 /? . ,F2 "+ U2l2. , G1 P+ V2129, G2P 4 W2/?. )
a3=^1*^9tT+Hl2.^f 1+P2/2.,F2+0?l2.,G1+^2l2.,GZ+S2/2.,r1P

1+Tr!?..F2a+U2/?.,G1P+V2l2.,G2P+a2!?.)

P4=4*-^I ( T+H,F1 + P3,F2+;; 3,G1+43,G2+j3•F1POT3,F?P+U3,GIP
i+V3,;?P+^,3)

T+H,F1+?3,F2+03,G1 4R 3,G2+S SoF104T3,F?P4 US * GIP
1+V3. ,2P+'A3 )
R4=H*E3(To4PF14P3PF2423,G1+H3,G2 +53,F 1P+T 3,F2?*U3,GV'

l+v3ry2P+M3)
34=ri*E4 ( To 4vF1 + P3,F2+)3r GI + F3,G2 + 53,FI 3 4 T3sF?P• U3,rs12

1+v3,G2P+W3)
T4sH *:5(T o APF1+P3,F24Z3,G1+F3,G2 +53 , = IP•T 3,F2? + U3,G113

1+ v3r;2P+.v3 )
U4= H*: 6 ( T+HrrI +? 3,F?+13, :i1+n"3,.i2+53rFIP + T3rF2P+U3,G12

1+v3„2 0 4 a3 )
14=H*_?(T+H,F1+ P 3, F24 , 13,G1 + P3,G2+S3,;r 1P+T3,F2P+L3PG12

1+ 13 r 3ZP+ S )
r14 % H* E t ( T+N.F1+P3rF2+03,G1+P3,G2*S 3. = IP+T3 ► F2s • U3,G1P

1+v3,'.?P+a3)

C

C
F:=F1+(('1+2.*P2+2.*P3+P4)/6.)
F?sc2+W2+2.*^2+2.*)3+04)/0. }
31=Gl a ((r1+2•*a?+2. *9 3 4 k4 )/5. }
:;2=;?+C(SI+?.*S2+2.*S If j4)/6. )
F1°=FIp+((T1+'_'.*T?•2.*T3+T4)/6 )
F2?:F?°+((U1+2.*U2+?.*US#U4)/6.)
G1'' =;S P+(C Vi+?. * l2+z. * J3. 94 )! 5. )
12' = i3 2 4(( WI*4,*W2+2.*w3 +ri4)/a.}

= • F1 2 + E P S*( • F1 + F? • ; I *12+ 1.5*( r;i'*.i?P • F1P *F2?) )

4C a ?= • F2 31 + E 2 S*( • 0.25 * C :;l *u1-' 1*F1)+0.'S*(F1P*F1P•G1P

44P3: - GI2•FPS*(•F1*G? *F 2*GI#3.5*(F1P *12P - G1?*F2P))
4CP 4% - 32' 4 E o S *( 0.3*F1 *; 1 . 4.5* V 1p*GIP)

C

C
TsT+-4

L = L 4 1
IF (L .El. 3 ) 10 T3 110
;0 T'7 10)

llJ a4lTE ( 6,50) T rFlr F2,;1,;?,ACPI,AC?2,+^",P3,;CP4
5”: FC9M4T (IXr F3.4r3X, F1 j. 5,1XrF1 ).5.3XrF1).5,2X ►F1195r5.X

1,x17. i,LX,F1') . 5r 3K . Fi0.Sr?.X,F 1^?.5)
L=1

10, CC?JT INUE
CALL EXIT
Es)
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F

C GA Z Y i U 3314U) VON-LIVA C044UST104 E OUAT ION'l OERI J:3
C	 F-434 NE
C	 TW3-v4RIASLE R EATMATION 4.T433
C
C i3VER%14G E4U4TIJ4S-CAS?	 NO TIME MAY (JBO)
C

E1(Tratr31.4Z.32. A3r 33s44r34)it-X3.3 *SIi3*A1.O.S *!t+81
1 • C.S *I *(41 * 4 3• it*33 . 42*44.32*d4) •0.5 *N *+(9AP+t 31+A3-A1
2 *f3 +92 *44 -A2 *34 ))*EPS
EC(TrAir31vA2r32rA3.33vA4r34)=(•3.S*SIGS*dI40*S *K *Ai

1 . 3.5*I + tA1 *9331+ 43 - A4 * 320A? *,)4)-J9S *V * 43AR *( AI*AS491
2*=3+42*A443?*34 ) )*cps
,3t TrA1r3irA2,3arA3r33.44.34) •{•3.4*SIu3 +A ?-0•S *K *32

1 • •3.S*1*(41*444? 1.*34 . 42 *43 .32*33) • j.5*!Y+a3AP*t 0 ,031- At
2*66.42*33-A3+32 ))• :o;

E4tTr A1r31 r 12r 32rA3r 33rA4i31 ► ) s t • J•S*5253*82+ 0.5*,Y *42
1 • ^.i+I *( 34*A1A : * 314A3+3t-42 * 33)•).y*1ffW3An"*( 41+4481
2*84 . 42*AI-V*33 ) )*£PS

;9( TPA IP31 r'1?..3? ► 43r33 . A+r34) a(• 0.3+SI,53+A3.4.*K*33
1 . 5.25*1 *t At *4L • 32*d?+31 +31 .11*At. • u. 125 *^i94A *N*t 41+31

E£(T * A1r31 pit.3?rA3r33*A4r9 4 ) s (-')•3*SIu3 * d344.*K*A3
:-C.25*1*(A 2+'3241*31) •^. fi625++^ 3iA*M*t42*AZ •92+32.11+A1
261*31 ))*EPS
:7(T.Ais3i.Atr3Z ► AarJ3.A4.34) s(•095*SI53*A4.49*j*34

1•^.?S*;+td 1*3?;1 *42) • '1.iZ5 + a3 a"*N*( 41*32+ 4t*3: ))*VPS
cUToatoU r42.32.A3.33r 44.34) : ( • 3.5*5: i3 *9444.*K*A6

1 • C.?3*I *('32 *4: • A'+ 31) • J.12S *4W A A ON * (A1*A2-31*32))*EPS
C

uI'+;11s1^:'^ FttS^)).F2(5J!`).,i(sa0).32tSJ0)

l;I
T

C acAJ IlITIAL C') YJT T1345 A 1 C34STAlTi
C
C	 E?S-'NOC; TEAM (tr'SIL34)
C	 MlA'r.-STEADY it ATE y UKNI `a; FA T;:
C	 X-VITC A ACII34 140EX
C	 r•C3RFECTMu lARIAU:" (3AFFL_SrdALL LI'41N,S ► yOZZLES
C	 .ET: .)
C	 I•,43 OY 'tA M IC 143EX
C	 AI#3SrA2.3 ?.Air33.44PJ4-M,304L OPLITUJE5 CJ FFICIENT5
c

RE43 (Sri)) vl4FrNpKv4,4AX. =3,=I
l y FV41AI (;F 13.4r13rZFIIo41

2EAJ (5.1-') Alp 31rAtr31.A3.3i.44rj4
12 FC °• 44T (Ar 13.4 )

t
C F=A ;TEP SIZE
C	 R ODUCIBILITY OF TH ',

ORIGINAL PAGE IS POOR

s
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14 FC 414AT (Fla.S)
3tII2%3A4/EAS
x;IT, 0 010 ) 51Gd ► A9A+ ►y.K.H ► EPS ► I

20 FCX'^AT t1X04X ► + SIGMA 34P+.Fl;)*4 ► lot X► 4X. + STE40Y STAT:
404143 ;ATE•{N 9A F } • ► : 10. 4 ► l ► 1X ► 4X ► + I!3TEPACTION IND:X

t•t3:r.F10. 4 ► l ► 1X*4X ► + COPA£CTt,3ti VAK2A+lt.E•tK)' ► F1Q.4 ► /
3.IXr4X. + STCP S1IE•( !1)'af l.^ . 4tr / ► lX ► 4X*IEPSIIOV•(EFS)+
4 ► FIO . 4 ► l ► 1X•4X#'3AS OYtiAr1IC I:yC£X•tI)^ ► f1C.4 ► !!)
4AITE t5 ► 3C) •i ► S1 ► A2 ► 52. A3,53 ► A4 ► d4

30 FOt.4 AT t19* + 1 .4ITIAt. ;0^202TI0 .̀t5 +.//rl^i ► ++ Xr^Al+.fl ?.4.Slt
1.+eZlr ► ft0 . 4 ► l ► IX ► 4X ► + A2' ► f10.4 ► 3A► +9? ► rP10.4 ► l ► IXP,4X
3. t o 3 r ,i1J.6raXr r d3 r ►+^ lt?.bsl,ll(.+4^(r r A4 ^a F10. 4r 3X ► ^d4+

go; IT: {, ► LOS
40 FCF*AT t 1X.iX ► r T JOE' p7',". 	 4I*r0Xr161rrIZX0fi2+r11X.13Z+

1 ► l: X ► $&S+& 11X. • 93' ► lOXr 9 44, + 01 0X. + i4 + r J1
c
C I-WII= 1UTTA AU3m1 Tfv4
C

OC 110 3 * 1rtiwAK
C

? Is4* Et{T.A1 ► d1. A2.3?rA3r33. A4,34)
l I*i *;?t T.41#31p  12. i?. 43r 33. Ai,BZ )
hIi'i*t3tTa 4T,3I•AZ,92sA3,33.4L,34?
at s -I*?4tt,AlriIf iZrdi,ASo3.Sr4$#o,14
T1 =3(T. w.'vIIf AZP33 ► AS* JSo44,+?4I
U1 9 ii*CS( T. Alp J1# 41 03 ! 04 1 1,j 3.4 4 ► 34)
Vls ^*""cTtf r.1ir31ri2rd?.53•^33rAiji(.?
»1 " H O _ A {T, AI f31r A2.:3?r A J, i 3#A4s ?4)

C
aL sy *C1tT•rllZ.,Aa•?iJ?.,`#1+ 	?. 04 Z4,1 / ?. ► A3

1 • T1/ ?. 0 33+„1/2 .r4 4.Vl1.r34.rt 11?•3
= ; 4 *C2t T o ii/'.. AI.^; /!..33 + ^I !?.a t .?+^ 1 /? ., 3' • it /?:.A 3

I+T1 J?.r33• J112.0 A4• 41/2.:J46041l2.)
its # E3 ( T o A iZ. 4 If Pt	 f, ol iZ # vA !q, g 1/a.r3`+i1/? :r4 3

1•Tit2••33+UIl:..A4./lJy..34+i21?.)
Six 4*E4CT • M/2.. Al+PI/?.r31 #41/ ?.,A?+A 11?.,42 +al

r	
l2.rA3

1.161/?.l3+Ut/Z.r,14-41/2.•34444/? ► )
T2 s 1*? St T+N!?.r At* P1/,,.dl+O1/?..3 ► 	 1/ ?4r4? +il/2.,AI

T1	 36t..33641 /.., aA+tliJ?.,3L•.1J?..)
U? s i • L .( T • H /?. • At # Pt /'.. 31 • *1i /?., A !4, 1 /Z. ,3Z'+ 3i /'. ► 43I/!.# 1110  Uf/!. p 446VI	 p Jv++y l/?. )
Je s A *E Tt T+ tit'., 41• P1/.. 31+ 01! ?..42. a 1! a. ► 3^+ i1 1?. r A3

1+ t1/2..) 3+ U:/'.,a4., ti ll.,iv+4 112.1
A gz m * ed( r , I /Z .. At.P1J?.. 31•01/2..AZ.Q112,P4Z#i11?. ► 4 3

t o TIJi..i3 • U14'. ► 44#411?.0,,34•ail/?.)
c

s'I s.i*E1tT• 'iIZ.. At* t+?/!..4toV/2.,1t?.«212.,3 +32J?.,A'T

+3=N *L2{T•^i/?., A1^P'^'f?.,dl•O?!?.rA?.R 212 .:32+52/?. ► A3



128

1+T 2 / t . +33+U212.0A4*Vz/'0034#N2/2. )
4Js4 & C3(T + 	At # P2/2ir31+3t / 2ePA2#42/2.032+S2,/ i•sA3

1+T^/. i r3s"^ UZIt. r 4A+^,2 lj• ► +3 6+fit/2•)
33*^ • ctt3 T+NJ:

f
., 41 0 2/^..3

y
i;^t

+
/̂ t.r4s+42Jt..32+52l2.r43

1 + 12 / 2. ,33+ ii^f ^i r ^^^^^/^i i 7^ • ^^il ^ ♦
T3=^t+ , g tTsM/'"OR Al* P2/ Z• r31+221200 AN 4212*012432120043

2+iZ/?.013+ U2/-i i A 4 +V212.034#W2l20 )
r3 n M+cb{#+H/2. 0 AtOP21200 31+7 ?!2.042+tt2J2.,32•SM0043

1 4 12/2 * PaPU2/2ii44*V2/29 034 ; +.212. )
V3^^+*C#t

y
T+tll2. ► 41^PZ/r• ► 3i+^Z/Z.rAt•P212.r3Z•g2!?.i43

1+T2/t•,3 ^* V?/ :,i 044+V?l Lil^^/ •A2J ^i)
0:2-1 +K WO4/l,.^^1 P2 /^.,BI^^^ /2.• #G Ll2 .i3Z+ 52/? •^^3ti- 1?/ 	 It U?!!. 04180 /t /2.,94+0i 2/20 )

t
P4=N + It T• 14 PA I 0 PSoAi +Q 3r 42 + F;,32.5 IPA 3+T3#1So ORA4 +131,d•► +,i3)
3 4x4 *i",(T+'4PAt+P3,9l*1304t+4 lo g t•S Sot 3+T 3033+;5 3,A4#vS

I0 i4+a3)
g4x ^ x "3(T • N.Al"3+31 'IS 0 A2 • r =,92+33rA 10T3,33+;,3,44+43

t,i4+i3)
4 2 -'" "T + MR41+ 4;p 3r31+1;,A 2. 45,132433,410T3.33+'J3r44#V3

Ii64*m3)
T4;4t Z5tT + 040AI O P3031 9 430 Ax 4 P3

to 140 Wi)

	

	
.3?+53x43 . 53,33+tJ3, 44++13J3, 44++13

v4 -M+;. Oi( T + 4 0 A! *  P 303 1 + 4 3 9 A ?♦ R 3 03 ?+ S 3,3 3+ T 3, 33+;, 30 A4• Y3
1x24+43)

14 x 4 t 'TfT + *i ► 41+P3031+')30	 S.jI*S Is.	 sTI,jS,)30j4*VS
1044•vJ)

44e;i"5{T•t1041 O P:0 131 4 130 A?+A 3032+S30A S • T3#334'13,A4+j3
lvi;ss43)

C

)ls;i.{tai+7.•*t •Z.+:3+.t6)/6. )
aC a ; ? • t( 71 47t •,: ?+2,*103•r 4)/0. )
'120 j2•(tyl+2.x:32*2.05.;•
i 3 s a 3+ttTI •?.xT 24?.*T $4 T4 )/5. )
31 8 1 S + t t Ul j2. *U'+? 0 *U3• a4) /if
A4s;4+tt^T•?0*^f2.2,*,/t•V4f /b. )
34s 34 + tti:+x.•424; * 6 vi e *4) /4. f

T+T+
C

^I(J)x41*.OSt T)• it *51w T )
510 ) x A2 6 COStT ) + 32 *SJ '4( T ?r2t.1 ) n AS..+}5{:. *Tl+j3 • S1^tt..+ T)

C
l;l' 1
If CL .C). 3) '. ^ T4 III
iv" T7 1 j0

11G 01 T: ( 6 15 ) '04I93I0A2 ► 92r.1SP)$*A4#34

t`
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SJ =C^e M4T (IX, Fp.4, UPFt0 . 5,2X,F10.5.3x , F13 5 , 2X. Flo .5 ► 3X
I,F13.5,2X,F10.3,3X,F10.5,2X,F10.5)
L21

4^C CCITIN4E
Y

L- a

T- J
OI T_ (S#41)

41 FOw1AT ( 1X,///,1X,3X,'TIMc',)X,'F1',10X,IF2' ► 11X,'G11
I,12X,'G2', / )

c
00 2:C J = IP'g4Ax

T=T•
L=L* I
1F (L .Ca. 3) IO TO 210
GC TJ 2:0

ZIP 4^I ;= to,31141) T^ F1(,i),F^t .:),.ilt.i) ► i2t„)
33 F3 6 I AT (I X,Fa.:, 3X,F10.S , J_X,: 10. 5o. UpF 10 . 5 ► 2X,F10.5)

L=2
Z3J^-*ITINL=

C
CALL E "I T

1 J

1,:,	 pAGL 15 YOUR
ORIGINAL



APPENDIX D

PROGRAM FOR EXACT SOLUTION OF

STANDING WAVE CASE
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C GjV,Y 4 y COO 4ALO
C ANALYTIC SOLUTION— STaMaIYG 4AVE CASE

-314F •ISI04 F1t3'0),F?(500)
'I-3.141526
H=J.1

3	 x..=o.o
_	 vyax=gao

^F3=J.1
^^AP =V• 1

C L=1

C 3EAJ IV GAS DYNAMIC INDEX AND 11TERACTI34 I%OEX
C

R E A ) (5,5) I,XN
S FVIAT (I3,Fif:.5)

C
C INITIAL CON31TI94S
C

=EA3 (5,1 •x) C:.C3,?HI1,'4I3
1C FOP44T (4r11.4)

C
:i,:I T= (b,l5) i

15 FC-1 4AT (IXP I GAS DYNAMIC INO_X',I5)
WFITE (S,1S) XN'

1c FC 114T (IX,'I'4TERACTIJV I,y?}EX'•F7.2,I//1
ofR;T= (S.2'J) CI,C3,PHI1,P413

)C FC 4AT (1X,' I'I I TIAL CJ y 0ITI0•'4 SOP //,I X, 4X, 'C 1 •F1).4 ► /
I.IX,4X, :3',FII .4 ► /,1X,4X,'?i11',F10.4./s 1X,4X, 	 FtI30
2,F13.4,/)

30 FC^44T ( IXP?X.'TI`".*_'•14XP#A1',13X•9A3',13X,'31',1?X
o- 154, C1', 1 2X. 'C 3' ► 11 X,' PHI 1',1 `)X,'PHI 3'P/)

V

130 J = 10TIAX
X.. =X J+E°S
!F (XN	 AND. I .c0. 1) GO TO 6,)
IF (XN •_')• 4-I.-AND. I •E:1. 0) GO T 	 50

C RC jai OYNA 41 CS
C

_	 514 CC%T 1`:._

$=1;.35353 +X`1*cP:i*t•L.)**J)
T = 1	 x°t • 0.5+vi84F* xJ)
U=-)+T
J=l. /COStU )

C1Z.4
1=tSIN U)/:O St U))

PrIi=PHIL
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+'HI 3=2.* p HII • ( t'. * RJ • 1. )J2. )wPI
u^j T3 ?00

V

C U C043UST13.4
C

6U CC4 T IA14E

CS=(_PS*t•1.)**J)It2.*.t34^) '
CT =2 . -EX? ( • n.5* ri34R*XJ )
CL=CS*CT

C1=04*CV
C1=t*_ XP( :U) - 1. /^XP(CU))/(EXp(CU)+1./_XP(CU))

PhI1=P411
P4I3 =2 •*34I1•=J *PI

??t: CJVTINUE
Al=;,1*COS(P w II )
31=CI*^IV(PHIi )

93=C3*SI`(PHN
FI(3)=AI*CJS(XJ)+31*SI4(X.1)
F2(j)=A3*-:OS(Z.*AJ)+33*SIN(2.*X,!)
IF (L .Elv. ?) JJ TO i'ltr
L = L • I
I;3 T7 1'JJ

4FIT: (5.5010) TIM"c,A1,43,31.33,C1,C3,?;iAI1,?Hi3
501 100 FC?4AT (1X,FT. 4, 3X,F13.5,3X,F10.5.4X,Fla.5,4X.F10.5,SX

1,F1:.3,5X,F10.5,4X,F10.5,4X,'11*5)
L=1

100 CC`JT 1.4U
C
C

A . Z ) .
L-1
drIT_ (b,iOrO)

6111	 F fJ44 A T ( 1 X, ///. 1 X. 3X, D TI ME	 1 ZX, I F   0 , 15X, r' I 	)_	 C

IF (L .EJ. 2) „0 TO 70.)
L =L+ 1

_	 O T') 303
T7') TIME=XJ

o5ITZ 0,7300) TNE,F1(J),r2(J)
7000 FORMAT (1X,F7.4,8X,F1?).5,7X,= !;i.5,/)

L=1
3^C CC',JT I LE

R^ROD VCrBX
IG&AL PUB I

POOR



CALL rXIT
c *0
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APPENDIX E

PROGRAM OF EXACT S

OF TRAVELING WAVE
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C SAFY H 4CM44LQ
C ANALYTIC	 SOLLTID `d-TRAVELLING	 wads" CASE

:21^rV5itIV	 fi{3^^t1 ) sFZiSGG ) s:lt 5 ^ fl),GLt 54'3)
PI=3.142525
Sul.1
X.r-0*0
NM4X=5ri4	 3

IFS=J.1
^J94h =G.1
L=1

C
C FEAR 14	 ,;AS 1Y%A1IC INDEX ANO	 IVTE44CTM IND_X
C

i

-A) 005)	 I'VA
5	 F5.4 4AT	 (I5PF10.5)

C
C IAI TI4L CMI TIONS
C

REA.)	 (5 , 2?)	 Ai, A 2, A3, A4
iG	 Ft;n^4 y T	 (4F14.^ I

RITc	 {5,i5)	 I
15	 FCRMAT	 (1X,*GAS	 a y NAMIC	 1300	 *0I5)

4 r iTC	 („lo)	 ^(N
16	 F0444T	 (1X,*1AtERACTt3N	 IVDEX ' •F7.?*J/!)

ntiii c	 t y ,?))	 ^I,;2,A3,A4
24	 FCFMAT	 (LX,'I.+1TIAL C:310IT10151 s//,1Y,4X, 'Al l pF13*4,J

101X. ,4 X, ► A2+•F:.?.4,/p1Xt4X,043 ► ,FIC.4,/,1X,4X, ► A4I
2, r1	 4,!)

FITS	 (S,S.)
30	 FLr.14AT 	 (1X , 4X,'TIME ► +14X, ► AII , 15X, ► 42 1, 15X*$A3 ► ,17X

I, ► 44 ► ,!)
^J	 1) }	 J	 =	 1	 4X
X4=XJ4EP3
IF	 (X'q 	 .El.	 J..4'4 .)	 - EQ.	 1)	 Ga	 T,,a	 60
IF	 ( X N	 .:_ i.	 2')..4 y 3	 1._ .1	 1	 GO	 TJ	 53

C
C *10	 ;A5	 0YV4 ?ICS
C

50	 C'4t 1?+:.E
5=. 7)711 * E?S* X.v

t=l.•Ec° t-•7.5*wdAFRXJ)
4=5* T

21./CO5('J)

A2 =of

ia3 1:4 (tJ)/C0S(J)

uJ	 T)	 7.0)
C
C NC	 C043USTlll
C

k#



}
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SO CCNTIN UE
Cs =_Ps/^r3Aa
CT=i * -EXP( ".5*w3AR*XJ)
CU=CS*CT
CV=?. /(EXP(CU)• 1./EXP(C'J))
Cw==x? (-0. 5 *013AR *XJ)
AI=CW*CV
C2 2 (_XP(CU)-1./EXP(CU))/CCXP( CU) 4 1. /:XP(CU))
A?=(Cw/2.)*CZ
3C TO 2')0

204 81=-A2
32=41
d3=-44
34=43
F1(J) = A1 * COS(XJ) + 31*SI'4( XJ)
GI(J)=A2*COS(XJ)+32*SIN(XJ)
F2(J)=A3*^.OS(2. *RJ) +i3*SIN(2. *xJ)
32(J) s A4*COS(!. *XJ)*'34*SIN(;• *XJ )
IF (L .'c;. 2) SO TO 3J
L =L +1
GC TI 103

50J TI,47=XJ
+IFIT _ 0+5000) TIM_,AI, 42,A3,A4

5000 FLRMAT (1X,Ft.4,TX,(4(F12.6,SX)))
L=1

144 -.3NTINUE
C
C

x..=). C
L21
41 1 T ,- t5,-, 000 )

6000 F0 4,1 41 ( IX,///, 1X ,3Xs 'TI M :-" PIUP "Fl 1,15X , IFZ',16X,lalt

Otl 33C J 2 1,"4,14X
XJZXJ44

IF (L .E). 2) 30 TO 700
L=L • 1
C.  T 1 1 3,3'^

71' TIM==XJ

4 R I T r (6 , 7000) TIM, , FItJ),FZ(.J),G1( J )piZ(J)
7.1,1 FIA-44T t1X, r 7.4, ° X,F1 . 5.7X,= IC, 5 ,8X,F11.5,7XPF1).5)

L=1
30C CO'jTIPoUE

CALL EXIT
_AO

s
,x
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APPENDIX F

PRESENTATION OF ACOUSTIC

PRESSURE CALCULATIONS
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ACOUSTIC PRESSURE DERIVATION

To calculate expressions for acoustic pressure, recall equation

(2.48) which stated

P = 

e- E	 t h E2 t u2 t 2tl 1 + ^^ ' Y^^ .

P	 `	 (F.1)

This equation represents the unsteady state deviations of acoustic

pressure. When expanding equation (F.1) into a Taylor series expansion,

the resulting equation becomes

P = P = 1- E a0 +E2 ^- ( u2 +^^	 ^) 
uazt (4f) 2]

+	 (F.2)

Recall that the steady state solution was represented in equation (2.35) by

C 2 i aZ i2

p = e	 ` J

When expanding (F.3) into its Taylor series expansion, the result becomes

p = 1 -E 2 4 dZ) 2 +	 . (F.4)
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where p is the steady state acoustic pressure. Therefore, the difference

in general acoustic pressure and steady state pressure can be expressed

by subtracting equation (F.4) from (F.2). For this investigation, a

restriction nn the velocity potential ; was that it was a function of 8

and t only. In doing this, the pressure difference equation becomes

p	
at T 1

- 06) + krt ) I .

Using the same Fourier series expansion for the velocity potential I as

expressed in equation ( 3.18), the acoustic pressure difference equation

(F.5) can be expressed in terms of the product of modal amplitudes and

trignometric function in the transverse 8 direction. Substituting the

appropriate forms of equation (3.18) into equation (F.5) and simplyfying,

the resulting pressure difference equation become

df	 ( dgL dgdf ;L

t)lj
E=^^-+ e (f f tgg) + h tdt + - t	 cos0 t	 i 2	 1 2	 dt dt	 dt 

df	 df	 2

+ - 
d
f2 + c (gl2 - f12 ) 

+ k 1dt -Vt
	 cos20

dg	 df dg dg^ 

;tAl
+ - d-tL + e (fig2 - f291 ) 

+ ^tl dtZ - dt 	
sin0

dg	
f

g
+ I d + ci^figi + k	 CA]] sin20	

(F.6)

a `i
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Since the coefficients in equation (F.6) are functions of time only,

these coefficients have been included in the calculations of the program

in Appendix B. Thus, for ,ay given angle 8, values for the modal

amplitude at any given time range can be calculated therefore determining

the acoustic pressure difference of that desired location.
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