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AN ABSTRACT OF A THESIS

STABILITY ANALYSIS OF A LIQUID FUEL
ANNULAR COMBUSTION CHAMBER

Gary H. McDonald
Master of Science in Mechanical Engineering

High frequency combustion instability continues to be a major problem
in the development and operation of rocket engines. Most mathematical
models simulating this phenomena involve the derivation and solution of
complex non-linear differential equations. In an effort to overcome the
mathematical difficulties associated with the solution of the nonlinear
combustion instability problems, two methods of analysis were developed.

In investigating the problems of combustion instability in an annular
combustion chamber, a modified Galerkin method was used to produce a set
of modal amplitude equations from the general non-linear partial differen-
tial acoustic wave equation. From these modal amplitude equations, the
two-variable perturbation method was used to develop a set of approximate
equations of a given order of magnitude. These equations were modeled to
show the effects of velocity sensitive combustion instabilities by
evaluating the effects of certain parameters in the given set of equationms.
From evaluating these effects, one can ascertain which parameters cause
instabilities to occur in the combustion chamber. In this analysis, it is
assumed that in the annular combustion chamber, the liquid propellants are
injected uniformly across the injector face, the combustion processes are
distributed throughout the combustion chamber and that no time delay occurs
in the combustion processes.
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Chapter 1

INTRODUCTION AND LITERATURE REVIEW

During steady operation of a liquid propellant rocket engine the
injected propellants are converted by various physical and chemical
processes into hot burned gases which are subsequently accelerated to
supersonic velocity by passing through a converging-diverging nozzle. The
operation of such an engine, however, is seldom perfectly smooth. Instead
the quantities which describe the conditions inside the combustor (i.e.
pressure, density, temperature, etc.) are time-dependent and oscillatory.
Such oscillations can be of either a destructive or nondestructive nature.
Nondestructive unsteadiness is characterized by random fluctuations in the
flow properties and includes the phenomena of turbulence and combustion
noise. Unsteady operation of a destructive nature, on the other hand, is
characterized by organized oscillations in which there is a definite
correlation between the fluctuations at two different locations in the
combustor. Such oscillations have a definite frequency and result in
additional thermal and mechanical loads that the system must withstand.

Unsteady operation of the destructive variety, known as combustion
instability, was first encountered in 1940. At that time a British group
testing a small solid-propellant rocket motor observed sudden increases
of pressure to twice the expected level, enough to destroy a motor of
flight weight. Since that time every major rocket development program
has been plagued by combustion instability of some form. These

oscillations in the combustion chamber can have several detrimental effects.



In some cases, particularly in solid-propellant rockets, instability

can cause the steady-state pressure to increase to a point at which the
rocket motor will explode. In liquid-propellant rocket chambers experi-
encing unstable combustion, heat transfer rates to the walls considerably
exceed the corresponding steady state heat transfer rates, resulting in
burn-out of the walls. If the chamber ;an survive these effects, mechanical
vibrations in the rocket system can cause mechanical failure or destroy the
effectiveness of the delicate control and guidance systems.

The phenomenon of comﬁustion instability depends heavily upon the
unsteady behavior of the combustion process. The organized oscillations of
the gas within the chamber must be coupled with the combustion process in
such a way as to form a feedback loop. In this manner part of the energy
stored in the propellants becomes available to drive large amplitude
oscillations. An understanding of this coupling between the combustion
process and the wave motion is necessary in order to predict the stability
characteristics of rocket engines.

Combustion instability problems in liquid propellant rocket motors
usually fall into one of three categories according to the frequency of
oscillation. Low frequency combustion instability, also known as chugging,
is characterized by frequencies ranging from ten to several hundred
hertz, nearly spatially uniform properties, and coupling with the feed
system of the rocket. This type of instability is less detrimental than
other forms, and the means of preventing it are well understood. Low
frequency instability will not be considered.

A second type of combustion instability, which is less frequently

observed, has a frequency of several hundred cycles per second. This



type of oscillation is associated with the appearance of entropy waves
inside the combustion chamber.

The third and most important form of combustion instability is
known as high frequency or acoustic instability. As the name suggests,
this type of instability represents the case of forced oscillations of the
combustion chamber gases which are drivén by the unsteady combustion process
and interact with the resonance properties of the combustor geometry. The
observed frequencies, which are as high as 10,000 cycles per second, are
very close to those of the natural acoustic modes of a closed-ended
chamber of the same geometry as the one experiencing unstable combustion.
High frequency combustion instability is by far the most destructive and
is the type to be considered by the following analysis.

High frequency combustion instability can resemble any of the
following acoustic modes: (1) longitudinal, (2) transverse, and (3)
combined longitudinal-transverse modes. Longitudinal oscillations are
usually observed in chambers whose length to diameter ratio is much greater
than one; in this case the velocity fluctuations are parallel to the axis
of the chamber and the disturbances depend only on one space dimension.

For much shorter chambers the transverse mode of instability is most
frequently observed. Transverse oscillations in rocket motors are
characterized by a component of the velocity-perturbation which is
perpendicular to the axis of the chamber but the disturbances can depend
upon three space dimensions. Such oscillations can take either of two
forms: (1) the standing form in which the nodal surfaces are stationary
and (2) the spinning form in which the nodal surfaces rotate in either the
clockwise or counterclockwise direction. Transverse combustion insta-

bility, particularly that resembling the first tangential mode, has been



frequently encountered in modern rocket development programs and has been

the subject of much current research.

Historic Studies in the Problems of Combustion Instability

Since the early 1950's much experimental and analytical research
has been devoted to better understanding %he phenomenon of high frequency
combustion instability. Most of the theories presented prior to 13966 were
restricted to circumstances in which the amplitudes of the pressure
oscillations were infinitesimally small in the linear regime. Prominent
among these are the picneering studies of longitudinal instability by
Crocco [1] as well as the studies of transverse instability by Scala [2],
Reardon [3], and Culick [4]. A complete discussion of these theories is
given in the work of Zinn [5] and will not be repeated here.

Although linear theories provide the propulsion engineer with
considerable insight into the problem, their applicability and usefulness
in design is limited. The linear theories cannot provide answers to such
important problems as the limiting value of the pressure amplitude
attained by a small disturbance in the case of a linearly unstable engine,
or the effect of a finite-amplitude disturbance upon the behavior of a
linearly stable engine. In the latter case the result of many tests
indicate that under certain conditions the introduction of sufficiently
large disturbances into a linearly stable engine can trigger combustion
instability. Another shortcoming of linear theories is the fact that
their predictions cannot be compared directly with available experimental
data; for, in the majority of cases, the experimental data is obtained
under conditions in which the combustion instability is fully developed

and in a non-linear regime. Therefore, theories accounting for these



nonlinearities associated with combustion instability are needed. A
more detailed discussion of the nonlinear aspects of combustion instability
can be found in a work by Zinn [5].

In the field of finite amplitude (nonlinear) combustion instability,
mathematical difficulities have precluded any exact solutioms, and
approximate methods and numerical analysis have been used almost exclusively.
For this reason publications in this field are scarce. Notable among these
is the work of Maslen and Moore [6] who studied the behavior of finite
amplitude transverse waves in a circular cylinder. Their major conclusion
was that, unlike longitudinal oscillations, transverse waves do not steepen
to form shock waves. Maslen and Moore, however, considered only fluid
mechanical effects; they did not consider the influences of the combustion
process, the steady state flow, and the nozzle which are so important in
the analysis of combustion instability problems. Nevertheless, pressure
recordings taken from engines experiencing transverse instability reveal
the presence of continucus pressure waves similar in form to those
predicted by Maslen and Moore.

One of the first nonlinear analyses to include the effects of
the combustion process and the resulting steady state flow was performed
by Priem and Guentert [7]. In this investigation, the problem was made
one-dimensional by comsidering the behavior of tangential waves traveling
in a narrow annular combustor of a liquid propellant rocket motor. They
used a computer to solve numerically the resulting nonlinear equations for
various values of the parameters involved. Due to the many assumptions
involved in the derivation of the one-dimensional equations, the results

of this investigation are open to question.



The successful use of the time-lag concept (see Crocco [1]) in the
linear theories prompted a number of researchers to apply this model to
the analysis of non-linear combustion instability. By considering a
chamber with a concentrated combustion zone and a short nozzle, Sirignano
[8] demonstrated the existance of continuous, finite-amplitude, longitudinal
periodic waves. These solutions were shown to be unstable, however, thus
indicating the possibility of triggering longitudinal oscillations.
Mitchell [9] extended the work of Sirignano to include the possibility of
discontinuous solutions. In this manner he was able to show that the final
form of triggered longitudinal instability consisted of shock waves moving
back and forth along the combustion chamber. Mitchell also considered the
more realistic case of distributed combustion.

In the analyses of Priem, Sirignano, and Mitchell the oscillations
were dependent on only one space dimension. One of the first researchers
to study finite-amplitude three-dimensional combustion oscillations was
Zinn [5] whose work is an extension of the linear transverse theories and
the analysis of Maslen and Moore. Using Crocco's time lag model Zinn
investigated the nonlinear behavior of transverse waves in a chamber with
a concentrated combustion zone at the injector end and an arbitrary
converging-diverging nozzle at the other end. In this case, it was
necessary to extend Crocco's burning rate expression and transverse nozzle
admittance relation to obtain the appropriate boundary conditions for the
case when the flow oscillations are of finite size. As a result of this
analysis Zinn was able to prove the existance of three dimensional
finite-amplitude continuous waves which are periodic in time. In
addition, he was able to prove the possibility of triggering combustion

oscillations. An analytical criterion for the determination of the



stability of such waves was derived, but because of its complicated form
and the limited capacity of available computers no specific numerical
results were obtained.

In more recent years other investigators such as Burstein [10]
have attempted to solve numerically the equations describing instabilities
that depend on two space dimensions. Aithough the resulting solutions
resemble experimentally observed combustion instability, this method
requires excessive computer time, and studies of this type for three-
dimensional oscillations will have to await the development of a much
faster breed of computers.

In a recent publication by Powell [11], the problem of analytically
and numerically analyzing multidimensional non-linear combustion instability
was investigated. The problem in doing this is that a system of non-
linear coupled partial differential equations whose soclutions must
satisfy a complicated set of boundary conditions governs the phenomena of
combustion instability. These boundary conditions may describe the
unsteady burning process of the wall of a solid propellant rocket motor;
the conditions at an idealized concentrated combustion zone of a liquid-
propellant rocket engine; or the unsteady flow of the entrance of a
converging-diverging nozzle. Previously, in an effort to obtain analytical
solutions to various combustion instability problems, investigators have
been forced to simplify the original problem to such an extent that it no
longer resembled the real problem that originally was to be solved. Powell
proposed a method to perform a nonlinear stability analysis with relative
ease. This method, applicable to both linear and non linear problems with
complicated boundary conditions, was a modified form of the classical

Galerkin method. The Galerkin method [11] is an approximate mathematical



technique which has been successfully employed in the solution of various
engineering problems in the field of acoustics. Powell used this method

to specifically study the non-linear behavior of combustion driven
oscillations in cylindrical combustion chambers in which the liquid
propellants are injected uniformly across the injector face and the
combustion process is distributed throughout the combustion chamber. Based
upon the results of his second and third order theories, the following
nonlinear mechanisms were found to be important in determining the non-
linear stability characteristics of the system: (1) the transfer of energy
between modes, (2) the self-coupling of a mode with itself, and (3) a non-
linear combustion mass source. Powell found that the self-coupling
mechanism was important in the initiation of triggered instability, while
the non-linear driving mechanism was important in the determination of the

final amplitude of triggered instability.

Statement of the Problem

In this thesis, the problem of velocity-sensitive instability will
be considered. Based upon previous work on this problem, only transverse
oscillations will be considered due to mathematical simplicities. Also,
the specific geometry of the combustion chamber to be analyzed will be
annular or ring-like. The purpose of this thesis is to investigate the
mechanisms which cause these instabilities due to the combustion process
in a liquid propellant annular combustion chamber and attempt to state
which mechanisms or conditions impose the greatest effect upon stability
of combustion.

In Chapter 2 of this thesis, the governing equations of fluid

motion (i.e., balance of mass and momentum) are stated. From the equations,




the general acoustic wave equation for non-linear combustion is derived.
In this derivation, both steady state and deviations from the steady-state
conditions are considered and their effects incorporated into the general
acoustic wave equation.

In Chapter 3, the Galerkin method is used to obtain, from the
general acoustic equation of Chapter 2,'equations governing the modal
amplitudes associated with the first two modes of transverse oscillation
in a thin annular combustion chamber. These equations for the annular
combustion chamber are solved numerically by the use of a Runge-Kutta
program for various conditioms.

In Chapter 4, a set of approximate equations are derived from the
modal amplitude equations presented in Chapter 3 by use of the two-variable
perturbation technique. These resulting approximate equations are
expressed both in the modal amplitude and amplitude-phase angle form. In
this chapter, four special cases are presented for which closed-form
solutions can be found. These four cases are (1) standing wave--no
combustion, (2) standing wave--no gas dynamic nonlinearities, (3)
traveling wave--no combustion, and (4) traveling wave--no gas dynamic
nonlinearities. For problems not falling within the above categories,

a numerical analysis is employed to solve approximate equations.

In Chapter 5, the results contained in the previous two chapters
are discussed and compared. Stability limits are obtained and the effect
of neglecting various physical effects are discussed. In addition, the
accuracy of the perturbation method is evaluated. A summary of the
research contained in this thesis is presented in this chapter.

In Chapter 6, a statement of conclusions is made along with

recommendations for future research in this area.



Chapter 2

DERIVATION OF THE GOVERNING ACOUSTIC WAVE EQUATION

In order to investigate the non-linear combustion instabilities

that occur in liquid propellant rocket engines, one must start with the

balance laws of mass and momentum. Also, for this problem, a constitutive

equation was formulated relating pressure and density. Mathematically,

these principles are respectively

where
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The * representation denotes that the above physical quantities are
dimensional. Equations (2.1) - (2.3) are based on the assumption that
the fuel drops serve only as a source of mass fof the gas phase.
Interphase transfer of momentum and energy are neglected.

Combining equations (2.2) and (2.3), the resulting equation is

<N %
o %

JCIE S (2.0)

For the physical situation depicted in Figure 1
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fuel drops enter here
through injector plates

Figure 1. Schematic of a Liquid Propellant Combustion Chamber
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A convenient non-dimensionalization of the variables is as follows:

3
“
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Substituting these non-dimensional relations into equatioms (2.1), (2.3),

and (2.4), the results are
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(2.7)

where the unstarred quantities are dimensionless.
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Dividing through by density p, equation (2.6) becomes

u - > [ :
u+u-$u=—p—. (2.8)

Q
rt

Since,

+
= =V &n p,

the governing equations can be summarized as

g—%+ V. (p%) = B (2.9)
g—‘;+ﬁ-“v’3=-?7£np (2.10)
p=p. (2.11)

It will now be shown that to the order of approximation inherent

» - L] . - - + -+
in these equations, the flow is irrotational, that is V x u = 0. To do

this, take the curl of equation (2.10) and set it equal to zero. The

resulting equation becomes
¥ x (%%-+ S .V 3) = -V xV4en p = 0. (2.12)
Since the curl of any gradient is zero. This may be rewritten as

—)
%’x%‘{-ar%x(ﬁ-v’h’):o. (2.13)
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The vorticity $ is defined to be

0 =9 xu. (2.14)
Thus,
> 33 » o+ 3%
u = — = s
Vxé—{:v = 5t (VXU) 5T . (2.15)

From the vector identity

R TE=304% - % x (Vx
it follows that

-V =V0em?) -0 x G (2.16)
Therefore,

Tx@ -7 =Vx¥¢a2) - uxfl. (2.17)
Recognizing that the curl of any gradient is zero, equation (2.17)
reduces to

T (@.-Vd)=-Vx (@xf). (2.18)

Using the vector identity
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equation (2.18) can be expressed as

Tx@ T =-@-Ho-2F-DH-@-0N

NN CET (2.19)

Therefore, equation (2.13) becomes

%--<3-%3+me.m+(a.m3-ae.m=o. (2.20)

Equation (2.20) can now be modified by using the definition for the total

(comoving) derivative which is

+y U - (VD).

2|8,
1
2|8

Substituting this expression into equation (2.20) and simplifying, the

resulting equation becomes

g @D -@H- T+ -D, (2.21)

Rewriting 2 (V%) as a [V - V x K)] which is zero since the divergence

of the curl of any vector is zero, equation (2.21) becomes

% .V -@V) -4, (2.22)

The implications of this equation for a fluid starting from rest are as

follows. At the initial instant of time (t = 0), the vorticity of any
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fluid particle will be zero. Thus, the time derivative of the vorticity
of the particle will be zero, implying that %%-= 0 at t = 0. Since

% = 0 and %%—= 0 at t = 0, it follows that # = 0 at the next instant of
time. By induction, it can be shown that 4 = 0 for all time unless the
velocity gradient becomes infinite for any t = 0. It is assumed in what
follows that this does not occur and thé flow is treated as irrotational.

. ->
Since irrotationality has been proven, the veloclty vector u can

be expressed as

w=Vy (2.23)

where ¢ is the velocity potential. Substituting equation (2.23) into the

left hand side of equation (2.10), the result is

EE_ > > EE_ 172y L > >
Y + U R o + V(3u“<) ux f
=g—t('5 ¥) +$E/Z(V w)QJ - Vyx 4. (2.24)

For irrotational flow (@ = 0), the right hand side of equation (2.24)

becomes

G[E‘E + L(Vy - ’v’wﬂ (2.25)

Therefore, equation (2.10) can be written as

> aw > > _
v{ﬁ+ L(vy - Vy) + &n EJ =0 . (2.26)
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Spatially integrating equation (2.26) produces

%%-+ L Vg - Vo + nop = alt) (2.27)

where q(t) is a function of integration. From equation (2.23), it can
be seen that an arbitrary function of time can be added to ¢ without
affecting the result for Q. Thus, @ (t) could be absorbed into y. The

same thing is accomplished by setting a = 0 which results in

it

n e (2.28)

or

p = e . (2.29)
Thus, p and 3 are both known as functions of . From equation (2.9), the

governing equation for ¥ can be written symbolically as

_g_% + 032¢ + -V>lb . %p = B (2.30-8.)

(2.30.b)

Rather than combining these quantities immediately, it is convenient to
first make further simplifications based on the nature of the physical

problem that it is desired to analyze.
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Steady State Solution

First, the steady state solution of equations (2.30) corresponding
to purely axial motion will be found. Define the steady-state velocity

potential $ by

b= ed(z) ' (2.31)

where ¢ (assumed small) is the measure of the deviation of the density
from its initial value (see eguation 2.32 below). The bar notation will
represent steady-state conditions. The steady-state burning rate w is

defined from

B = w(z), (2.32)

While many other situations are possible, attention will be confined in

the present work to the case when w = 0(e). To indicate this let
T = €0 (o = 0(1)). (2.33)

Thus, the burning rate B can be expressed as

B = eo. (2.34)

2€ dz
p = e . (2.35)

Using the Taylor series expansion for the exponential function and

retaining only the first two terms, equation (2.35) becomes
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2
=1 - 12 (49!
p - 1 2€ (d;> + . . . . (2.36)

Substituting equations (2.31), (2.34), and (2.36) into equation (2.30.a)

and dividing the result by e yields

- - = - -
_, (2(48)? (5] & [ (8) (£1)] - =
@ e \az) v LEZd @ [T \@z) \az? ° (2.37)
or
2 - 2-
égg._ g_ez(%%> (%E§>+ - (2.38)
Retaining only terms of 0(1) produces
2-
d“¢ _ -
'd—ztz' = 0. (2-39)

For simplicity, only the case of uniformly distributed combustion (i.e.
0 = constant) will be considered. Thus, integrating equation (2.39) one

obtains

do
= - 9% tC (2.40)

where §§-= u is the steady state velocity of the gas.

At the injector (Z = 0), u = 0. Thus, C1 = 0 and

Q
-

=g
1]
]
Ql
N

(2.u41)

o
3}
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Deviations from Steady State

Tt is now desired to investigate the stability of the steady
state solution discussed above. Toward this end, an additional
velocity potential related to perturbations from the steady state is

defined by the equation

p=¢ ¢+ ¢(x, vy, z, t)]. (2.42)

A perturbation burning rate B is also defined by the equation

W+ Ew. (2.43)

o]
it

0(e) and this is indicated by defining a function

It is assumed that w

o such that 6 = 0(1) and w = oe. Then equation (2.43) becomes

e(o + eo) . (2.44)

[vs}
It

Taking the gradient of equation (2.42), one obtains

Vo = elVE+ Vgl (2.45)
or
Vp = efae + Vol (2.146)

Z

From equation (2.42), the time derivative of y can be expressed as

v _ €3¢
) ot

3t (2.47)



Substituting the equations (2.46) and (2.47) into equation (2.30.Db)

and simplifying, one obtains

21

(2.u48)

Expanding (2.48) in a Taylor series and neglecting terms of O(es) and

higher produces the expression

p=p=1-c¢€

3¢

— +

at

£2 [—1/2(52 + Vo - Vo) -u

3¢
Fr

67,

(2.49)

Substituting equations (2.42), (2.44), and (2.48) into equation (2.30.a)

and dividing the result by e leads to

76

+ 20l + Vo - $¢))— g ¢

3 ,-2 x
[j% 3;-(u +

+ . . .+ P - £ 39

Ju *2 - >
=t Ve ) + (ueZ + Vo)

(7]

0z at

Neglecting all terms of 0(e?) and higher and recalling from the steady-

state solution that u

d¢ _ = du _ - _.
Iz - 9% and iz ¢ yields
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3% o2 L 83T - 329 3¢ 3% . 3¢
Vig e TIRSAAIAL DA vy vl voll-vy Sl Pl

3 5, 5 3% (3, . i&)__
+ tc+uazat+(v¢ 68': = -ge. (2.51)
Substituting

19 Ty . ) = Ty . U OO

55g (Vo - VE) = Ve - Vo (2.52)

into equation (2.51), results in

2 2 -
;C—g—vz¢+e[2(_v)¢'$%%)+2§a¢ s 35

+ é.i (Vz - 82_¢)] = -0¢ (2.53)

where only terms of 0(1) and 0(e) have been retained. Equation (2.53) can
2
be further simplified by observing that V2¢ = %E%-+ 0(e).
Thus, the last term of equation (2.53) can be written
3¢ o2, _ 329\ _ _ 3¢ [3%¢ _ 920 | .2
€ (v¢"—z-53_t —BTZ—+0(€) 312 —O(C).

Since the other terms of 0(e?) have already been neglected, consistency

requires that this term be deleted and the equation be rewritten as

32%¢ 2 > 2 30 - 8% 39 =]._
7 - Ve + 5[2<V¢ V§—£—>+2u azat+—t- 0O = -0€. (2.54)
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In this thesis, attention will be confined to transverse instability.

For this situation

¢ = ¢(x, y, t). (2.55)

Therefore, equation (2.54) becomes

329 _ o2 3, . T 30 3 -] .
a—_t—z—Vd)‘l'E[Q(V(i) . V',a—t- +5'E o} = - O€. (2.56)

To account approximately for frequency changes due to baffles, nozzle

shapes, etc., a correction term of the form

2329
e KV (5%7) (2.57)

was introduced into equation (2.56). This form, one of many possible, was
chosen so that the linearized form of equation (2.56) would reduce to Love's

equation for a one-dimensional problem. This linearized form of (2.56) is

32¢ _ 8% _ _ 3% _ _ g
3t2 ~ 9x2 | ¢ " 9xZatz . (2.58)

Thus, it can be seen that the value Kwill affect the acoustic frequencies.
Physically, this is the purpose of baffles, nozzle shapes, and other
physical parts of the combustion chamber. Therefore, inserting the

correction term into equation (2.56), the resulting equation becomes

32, - 3¢ + 3¢ 2(32¢)] _
=7 - V24 + e[?<§€ + 2$¢ Y Frai KV 3e2)| T T ot (2.59)
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where K is the correction factor. This non-linear wave equation will be
the basis for numerically and analytically investigating the transverse

combustion stability problems occurring in liquid propellant rocket

engines,



Chapter 3

DERIVATION OF WAVE EQUATIONS BASED UPON AN

ANNULAR COMBUSTION CHAMBER

In Chapter 2, there were no restrictions concerning the geometry
of the combustion chamber in the derivation of the acoustic wave
equation. In this chapter, however, a set of equations will be developed
based upon a narrow annular combustion chamber. A typical cross-section

for such a combustion chamber is shown in Figure 2 below in dimensional

and dimensionless form.

A\
Y/

75

b

(a) Dimensional (b) Dimensionless

Figure 2. Dimensional and Dimensionless Form of a Circular

Cylindrical Combustion Chamber

In Figure 2 (a), the dimensional quantities are

r - radius of a typical point in the combustion chamber

reknl

- inside radius of the combustion chamber

b - thickness of combustion chamber's cross-section.

25
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In Figure 2 (b), the dimensionless quantities are

r - non-dimensional radius of a typical point

R -

ey
H
Lo

o
|
o ook

The first major assumption to be made in the geometry of the combustion

chamber is

§<< 1 (3.1)

which states that the circular cylinder can be thought of as a thin
(ring-like) annulus.

Define the characteristic length L* by

L* = R*. (3.2)
In restricting the analysis to an annulus, a transformation to polar

coordinates is convenient. Recall that the gradient and Laplacian

operators in pelar coordinates are

-
I o . 2T 3_
V= oor Y7 95T %25z
(3.3)
2 2 2
2 0 8% 19 1 3% 3%
v Ir2 trar T r2 302 t 322

The second major assumption for the simplification of the velocity

potential is restricting



=g
fl

Therefore, using

$(8, t)

27

(3.4)

the operators of equations (3.3) on the function of

equation (3.4), the results are

.
-
1

vZ¢ =

Substituting the

equation (2.58),

324 _
3t2

Now, express the

c¥
"

>

where u - steady-

>1 . .
u - perturbation velocity vector.

3¢

>
€ J0

2

9
362,

(3.5)

results of equation (3.5) into the general acoustic wave

the modified wave equation becomes

3%

¢
362 3t T 2

8

+ € [6

velocity vector

=] 1
=¥

state velocity vector

3¢

From the steady state solution in Chapter 2, the velocity vector was

defined as

32¢ 3% _

363t - N 3tZgez| - ~ 9t (3.6)
(3.7)
(3.8)
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Define the perturbation velocity vector by

ey = e 30 2
R ) (3.9)
Substituting equation (3.8) and (3.9) into equation (3.7) and using

equation (2.23) results in

T=eL 2 4. E%— 2 = Wy, (3.10)

To determine only the transverse velocity component of the perturbation
velocity vector, subtract the perturbed velocity component along the

axial (z) direction of the chamber from the total perturbation velocity

vector. Thus,

' = U e . (3.11)

In this case, since u = u(8, t) only, there is no perturbed velocity
component in the axial direction; therefore,

' = e ég_g
Yy 36 8. (3.12)

It is now desired to find the burning rate ¢ in terms of the parameters
in the wave equation. To obtain this expression, assume velocity sensitive
combustion with no history effects. Mathematically, the burning-rate

function for velocity-sensitive combustion will be expressed by the purely

phenomenological equation



where n is called the interaction index.

29

(3.13)

Using the derived results for the general time-delay integral

(discussed in Appendix A), the burning rate with history effects

accounted for by a simple time delay is

where the subscript T represents the time delay.

will be assumed that

Then, the burning rate can be expressed as
o =h{3e)2_ .f39) 2
..nw[(a—e) —](aer

where 7 = 0 - no time delay

1 - time delay.

(3.14)

For simplicity, it

(3.16)

Therefore, substituting equation (3.16) into equation (3.6), equation

(3.6) can be rewritten
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3%y 329 - 3¢ 3¢ 924 %
5t2 382 T ¢|% 3 Y 2 3% 3o - N3eeer

+ ne ((%2 -3 (3—2)2)] = 0. (3.17)
T

There is no closed form solution of equation (3.17) that appears likely.
The main purpose of the present work is to determine the modifications of
solutions of the usual acoustic wave equations that are caused by the
presense of the nonlinear terms multiplied by € in equation (3.17).

Thus, rather than attempt a finite difference numerical solution of
equation (3.17), the following procedure was adopted.

The solution is represented by the Fourier series

p(o, t) = fl(t) cos B + fz(t) cos 26 + gl(t) sin 8

+ gQ(t) sin 26 + . . . (3.18)

and initial conditions are chosen such that in the absence of the nonlinear
terms, the exact solution can be formed using only the first two terms of
the Tourier series. Because of the quadratic nature of the non-linearities,
the second two terms in equation (3.18) represent a complete first order
correction to the acoustic solution due to non-linear gas-dynamic and
combustion effects. Only the first four terms in equation (3.18) are,
therefore, retained and the approximate solution determined by this method

is the simplest one capable of illustrating the influence of the nonlinear
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terms. The approximation can, of course, be improved by retaining

additional terms in equation (3.18) but this is not investigated.
Substituting equation (3.13) into equation (3.17) and using

the multiple angle formulas to simplify terms containing products of

trignometric functions, one obtains

d2f af af df dg dg ]
o1 1 _2 1 2
qz Thitegw T {f2 & Tha TR TaE

dzs
_1 z — otenn
+ Ke acz ¢ 2new [flfQ + gng] 2jenw [flrthT + nggQ';l cos 8
d2g _dg ar dg af dg ]
Naez T8 Teg t QE[éQ T ThE o aw  hhm
dzg

+ Ke Ic + 2 new{%ng - f2gi] - 2Jewn [fngQT - szgll sin ©

azs df dg af ] a’f
2 - _2 —1_.f 1 2
+ T2 + 4 f2 + w Iz +s[g1 It f1 It + 4Xe iz

- 2 2 .- 2 2
1 - -1 -
+ *swen [gl fi ] sjwen [ng flrj} cos 20

d%g dg af dg d?g
_ 2 - =2 _ 1 1 2
Nagzo t 48 t o g —flg 3 Thiar| e Tz

(3.19)

1]
o

- wne [flgl] + jwne [ijng:} sin 20 + .
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Equation (3.19) is a summation of terms composed of some function of
time t and a term containing © variation Since the equation must be
valid for all values of O, each of the time dependent coefficients
of the ©6-terms must individually be equal to zero. Therefore, four
ordinary differential equations governing the time-dependent modal

amplitudes f f2 and g, emmerge from this analysis as the governing

19 g19

equations to be used for analysis of instability in an annular combustion

chamber. These equations are

azf df af df, dg, dgz]
1 -1 L 2 _t 2
gz thteg refh ot T w® e
d2f _ B
+ Ke 5{7L + 2new [%1f2 + gng} - 2jenw [f11f2r + nggQJ =0
(3.20.a)
d?g _ dg1 df dg df dg
o tEs teg Tt E s hhx
ng
—1 - - - 2%el - -
+ Ke I + 2new [fng f2g1] 2jewn [%1Tg2r f21g14 0
(3.20.b)
d?f df dg df1 d2f
2 -2 —1_ 1 —2
gzttt tee - ) |t Ve I

1 2 _ P I UK St 2 _ 2] - .
+ Zewn [%1 f1 } 57 ewn [ng flT] 0 (3.20.c)
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a2g g df dg d’g
iz T tuFT e T TR |t e g
- wne [flgl} + jnwe [fhgh] =0, (3.20.4)

In the following work only instantaneous combustion will be considered.
Thus, the appropriate equations are equations (3.20) with j = 0. These

equations are recapitulated below.

azf af af df dg dg
1 -1 1 2 1 2
qz TR tegrt2ef, T G T e g et
d2f -
_ 1 - -
+ Ke g5+ + 2new Lflf2 + gng] 0 (3.21.a)
d?g dg df dg df dg
= 1 1 2 . 2 _f 1
Tzt teg te, s th e w® b E®
dzg _
+ Ke EE71-+ 2new [fng - f2g1} =0 (3.21.b)
azf _ df dg df
gty te gt trelg o N Fw

+ UKe —5% + %ewn [é12 - flz] = 0 (3.21.¢)
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d®g _dg a dg
Tzt tue gt oele gt
d2g _
+ 4Ke H¥72-_ WNE %1fj =0 (3.21.4)

The equations of (3.21) were solved numerically by the use of the
quartic (fourth-order) Runge-Kutta method. To use this method, the

equations of (3.21) are modified by defining the quantities

df
dt 1

df
dt 2

dg
—1 -
at b

dg
_—2.:
dt bz . (3.22)

Substituting these expressions into equations (3.20) and solving these

equations for the highest derivative (in this case - second order), we get

da

1 = -~ - - i
It fl m(al) 261(f2(a1) + fi(a2) + gQ(bl)

+ g1(b2)) - 2ne$(f1f2 + g1g2)] /(1 + Ke)
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db
EEL = ‘}gl - w(bl) - QEi(gQ(al) + fl(b2) - g1(82)
- f2(b1)) - Qnea(fng - f2g1)]/(1 + Ke)
da _ ' .
a?Z = [-ufz - w(az) - €i (gl(bl) - fl(al))
- |
-Lewn [glz - flﬂ}/(l + LKe)
db )
E€Z = [—ugz - w(b2) + ei(gl(al) + fl(blﬂ

+ wne (flgl% /(1 + 4Xe) (3.23)

where 1 is the gas-dynamic index.

By the development of a computer program incorporating the Runge-
Kutta algorithm which can solve systems of first-order ordinary differen-
tial equations, the eight equations (3.22) and (3.23) were numerically
solved for the eight variables a5 3y bl’ b2, fl’ f2, gy > and 8-
Different cases involving varying the gas-dynamic index, interaction
index, the correction variable (K), and the order term (epsilon) will be
discussed and compared with the perturbation method of solution in a
later chapter. In Appendix B, a sample program listing this calculation

appears.



Chapter 4

TWO-VARIABLE PERTURBATION METHOD APPLIED TO THE

ACOUSTIC WAVE EQUATIONS

In this chapter, a set of approximate equations will be developed
from the governing equations for the modal amplitudes (3.21), by the use
of the two-variable perturbation method. The two-variable method is well
suited to this type problem since one expects the solution to consist of
sinusoidal functions with slowly varying amplitude. Applying this method,

define two variables representing time

n=-ct . (4.1)

Therefore, the four modal amplitudes would now be

£, = fl(i,n)
£, = £,(g,m)
g, = g;(&n)
8y = gQ(E,n). (4.2)

By applying the chain rule of differentiation, it can be shown that

“dZ_ 8Z
I - + € (4.3)

and

36



a%y _ 3%g

at?  3g?

where 7 = f

l, 25 gla g2

37
927,

2
c 2 0%%Z
39Edn

an (4.4)

+ 2 + €

respectively for each of the above equations.

By substituting equations (4.3) and (4.4) for each modal amplitude into

equations (3,21)

equations become

and keeping terms only of 0(1) and 0(e), the resulting

32f 32f of of of g
1 : 1 =% 1 2 1
+ £, + g2 ——+ g —+ 2f, — + 2f, — + 28, —
2E2 1t elE a9 2 3¢ 1 3¢ 82 3t
28, 3%t _
+ le 3% + K 322 + 2nw(flf2 + gngX]— 0
3%g 32g 3g of 3g of
1 1 =221 1 2 2
+ + + o—— + 2¢g, — t+ 2f, — - 28, —
se2 T8t el oo Y 1 %3¢ 1 3t
CESY azgl
- 2f2 5T + K 3 + 2nw(flg2 f2gl)] 0
2 2
it + uf_ + g[2 > + 725 + 1 - )
9E2 2t el T T 9% T 81 ae 13¢
32f

2
[23 g _ %8, ) of; 384
elo9en Y 9% T 8L 3k 1 3¢
- ah(flgl)] =0 . (4.5)



From the straight-forward perturbation method,

by the series expansions

38

define the modal amplitudes

fl = flo(g:ﬂ) + € fll(g,ﬂ) + . . .
£, = £0(Esm) * € fél(E,n) S
gl = glo(gﬂn) + £ gll(ggn) + ¢ ¢ .
g2 = gQO(E’n) + e ng(Esn) T oo o o (4-5)
Again by applying the rules of differentiation, it can be shown that
22 3T 3
[:13 9g :13
322 _ 321 3%k
NP A T
g
2 2 2
%2 T 8 K (4.7)
agan agan dEdn
where Z = fl, f2, By> 8y
T = £145 T390 107 820
and K = fll’ le, £11> 8912 respectively.

Substituting the expressions of (4.6) and (4.7) into equations (4.5) and

keeping terms only of 0(1) and 0(e), the resulting equations become
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2 2 2
—2—8 10 + £+ e[—z———B 1 + £+ 2 ? 10 +0 10 + 2f -—-—Bflo
13 10 2E 11 9Eon 9 20 3E

2
+ 2f 3529-+ 2 *810 + 2 2E20 + K'B 10
10 3¢ €20 3t “810 3¢ 3£2
+ 2nw(flof20 + glOgQO)] =0
2 2 2
%81 9813 81y — 8y, EEET

57 T Big telgpr—t 8t 255, Y O3E T %850 3

2
b oE 220 g 220 e B0,y B0
10 3¢ 10 3% 20 3E 5E7
+ Qnm(flogzo - f20glo)] =0

2 2 2
3 fQO 3 flO 0 f20 "BfQO
3&2‘— + L|-f2o + E[‘Tz'r’ + 4f21 + 2 BEBn +Oag

3g af 32f
10 10 20 1=/ 2 = 2472
* 810 37 £lo38 gt nlg - £,71=0
2 2 2
3%€90 0%g 9%8yp  — %8pg

21
—a—gz—' + L}gQO + E[W— + Ll-gzl + 2 e + 0 Y3

of 3g d%g
10 10 20 — _
—glo -B—E__ 10 SE—— + 4K —é'gz— - wn(floglo)] =0, (“‘.8)

By separating the terms of 0(1) and 0(e) in the equations of (4.8) and

equating both sets of terms equal to zero, the resulting equations become
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2
* 10 + =0
g2 - 10
32f
20
uE =
FTZ + f20 0
3%
20
3E2 +4g20 0 (4.9.a)
2 2
a°Fy . 5 Ly ¥, 310 359
3g2 11 “3zan Y 207 105¢
3g g 32f
10 20 10 _
"28203z " 810 3g2 ez~ el yfag + 810850)
2 2
8, .., %0 =50 10 3820
g2 f11 3gdn 3k €20 g 10 3¢
of g 928
20 10 10 -
Y2810 3¢ T Yoo 3 T Kgem - 2mlf 8y - Fao8io)
2 2 2
TN e o 0 ¥ o ¥
2 21 3£9n Y 810 3¢ 10 3¢
32f
_ 20 1 2 2
MY Zun(81° = £149)
2 2
2781 | o = 07820 _ — %0 | 8ty
3E2 21 agan 0 3¢ 10 3¢
2
pE o210 280 g ) (4.9.b)
10 3¢ 9g2 w*10%107 . T
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The equations of (4.9.a) are linear second-order differential equatioms.
Therefore, it can be shown that assuming the appropriate form of a solu-

tion, the results become

flO = Al(n) cos E + Bl(n) sin ¢

8o ° Ay(n) cos £ + B,(n) sin &

f20 = A3(n) cos 2% + B3(n) sin 2

850 = Au(n) cos 2¢ + B, (n) sin 2¢, (4.10)

Substituting (4.10) into (4.9.b) and using the multiple-angle formulas

yields

32f da
T P S
2e2 11 dn 2 "1

M/Ll—'

AjAy + BlBs)

1 .
-(BlB3 + AlAa) + E(AQAu + B2Bu) - (A2A4 + BQBu)

—1 1 .
1t nw[EgAlBs - A3Bl) + §(A2BH - BQAq)i] sin £

dB, ;_ 1
-2 Fral §GB1 + E(ASBl - AlBs) + (AlB3 - A3Bl)

1 1
5 (AuBz - AQBu) + (AQBu - B2Au) - §KA1

—1 1
+nw[§(AlA3 + BlBS) + -5-(A2Aq + BQBM)]] Cos E + . o«
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g dA
11 _ 21— 1
A t gy = -2}~ a3 oA, + mA>H>: + wwm;v
1
-A>H>: + wpwxv + A>m>m + wmwwv - MA>m>m + wmwwv

1 -1 1 .
-3 me + UE_HMQwa: - >:wu.v - W@Jmm - >mmmﬁ_ sin
B, - 1
-2 + =oB. + =(A B, - wF>Hv + A>Hw: - >Fva

dn 272 27471
“(AB. - B.A.) - X(A.B. - A.B.) - = KA
273 273 2 273 2 2

372

— 1 1
SE_HWA>H>: + wu.wzv - MA>w> + wwww: cos £+ . . .

2
2
mlmmmw +4f . = -2 -mmwm.- Zo(24,)
32 21 dn 2 3
r 12 -a2) - B2 -4,2)]+ 2k(-1B,)
2 272 2 2°71 1 3
1 - 4By 1 1
+ .ﬂ:c:,wwm - >wau sin 2 -2 mMml + Moﬁwwmv._lm,g.mwmn\;wwv

_ 1 =1,2 q2y_2Yr2na02
+2K( :>wv + msemmA>m B, ) mA>H B, 1| cos 28 + . . .

2%, a1 1.1
ez +ougy) = -2\ -2+ S0[-2A,1 - F15(8,B, - A\A))

+

Qﬂf

1 —1 .
B,B, - >H>Nvu + 2K[-uB ] - mamHmA>me+>mevu sin 2t

dB

ﬁ i 1— 1.1 1
lw.mas + mqhmw:u - MﬁmAmm>p+>wwpv+mAww>H+>mevu
[
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1—1
+ QK[—”AHJ - Enw[E(AlAQ - BlBQ)J] cos 28+ + .+ (#.11)

where + . . . indicates terms multiplied by sines and cosines of integral
multiples of & other than those shown. The particular solutions corre-
sponding to the terms shown on the right-hand sides of (4.11) will contain
terms proportional to & sin nf or & cos nt [n =1 for (4.11.a, b), n = 2
for (4.11.c, d4)]. Thus, the second approximation would be unbounded for
large £ while the first approximation is bounded for all &. These
unbounded terms are called singular terms. The terms on the right-hand
sides of (4.11) indicated by + . . . do not lead to singular terms.

The idea of a perturbation solution is that higher order terms in
the series solution represent small corrections to this first term to
obtain a uniformly valid expansion. The presence of this singularity
causes this fundamental idea to be violated. Therefore, since the expres-
sions of n dependency are independent of the variable causing the singu-
larity, the n-dependent expressions can be set individually equal to zero
to avoid this problem. Therefore, from equations (4.11), the resulting
equations, which are eight ordinary first-order differential equations

having n dependency, become

dAl 1= 1l 1
T+ 3Ry + 5By ¥ GIA A, + BBy ¥ AjA ¥ BoB,]
+ L o(B.A. - AB, +BA, - ABJ=0

2 13 173 2y 274

11— 1 1
ot OB - ALY SLaBy - BA; - AB, + AB,]
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l._.
- —wn[AlA

8 2~ BB,J =0 . (4.12)

Since equations (4.12) are first-order nonlinear ordinary differential
equations, the fourth-order Runge-Kutta program, previously developed,
can be used to solve for the modal amplitude coefficients. By finding
these coefficients for various points in time, a relation between the
results of equation (3.21) and equation (4.12) can be observed to the
approximation of order e.

Solving equations (4.12) for the highest derivative (first order
in this case) and substituting n = et, the governing equations for the

Runge-Kutta program become

dA,; 1— 1 1

e [-50R) - 5KB) - 5 (8A; + BBy + ApA, + B,5,)
-l ™B.A -AB. +B.A -AB)]

SRWL S Ag 1°3 2y 2°u

aB

—25[—£€B +31<A -—l-(AB - BA_ -AB_.+AB)
at 708 t P T YT 173 yop T BBy
- i(AA. +B.B. + AA +3B.3)]

pRwi By 84 1°3 2%y 27,

da

2 1— 1
T - el- 38, - 7B, -

Qﬂf

AlAu + BlBM_ A2A3 - B2B3)

1 —_
- aﬂm(AuBl - AJB, + ABy - A3B2)J

dB, 1— 1 1
3T ¢ [- 0B, + 3 KA2 - 5(BuA1 - AB) + AjB, - A2B3)
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l__
- Sun(A A, + BBy - Aghy - B,B3)]

.dA3 1 i
— = _ A5 - - 2 _ 2 2 _ 2
e }e[ §0A3 uKB3 §(A2 B2 + Bl Al )
- Llgas. - AB)]
g 171 272
dB
3 1— 1
el el- 50B4 * LKA, - —(A2B2 - AlBl)
o Lo -B.2-4a2+3B2)]
16 2 2 1 1
b 1— 1
T - el- EGAu - 4KB, - =(B B, AlAQ)

l__
- §ﬂw(AlB2 + AQBl)]

dBu 1— 1

Tl el- §0Bu + KA, + E(BQAl + AzBl)

+ 35n(A.A. - B.B)] (4.13)
8 172 1°2 )

Tt is often convenient to eXpress the equations for Ai and Bi in
terms of amplitudes, Ci’ and phase angles, ¢i, which are also functions
of the slow time variable n. Mathematically, we can express the relation-

ships between the quantities as

A, = C, cos ¢, (4.14.a)
i i i

td
il

¢, sin ¢, (4.14.Db)
1 1



dAi dCi d¢i
o = g cos ¢i - Ci T sin ¢i (4,14,
dBi dCi d¢i
e Hﬁ—'SIn ¢i + Ci'aﬁ_ cos ¢i (4.1u.,

where i = 1, 2, 3, and 4 for each of the equations above. Substituting
the expressions of (4.14) into the first two equations of (4.12), the

resulting equations become

dCl d¢l 1 — 1
I cos ¢; - Cl Er sin ¢, + 5 oCl cos ¢y + §KC131n 2

1 . .
+ §{C103 cos ¢, cos ¢5 * C,Cqy sin ¢, sin ¢g
. . 1
+C2C4 cos ¢, cos ¢y + C2Cu sin ¢, sin ¢4] + EﬂatClC3
sin ¢, COS ¢g - C,Cqy cos ¢ sin ¢4 + C,C, cos ¢ sin ¢,

- C.C, cos ¢, sin ¢,1 =0

ac,y mal 1— 1
o sin ¢, + Cl I cos ¢y + 5Ucl sin ¢; - §KC1 cos ¢,

1 . .
+ -E{ClC3 cos ¢; sin ¢5 - C,Cy coOs ¢5 sin ¢,

. . 1
- C,C, cos ¢, sin ¢, + ¢, C, cos ¢, sin dyd * EnBIClCS

cos ¢, COS ¢4 + C,Cq sin ¢, sin ¢4 + CC) cos ¢, cOS ¢,

L7

c)

d)
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+ CQC|+ sin ¢2 sin ¢4J =0 . (4.15)

Multiplying the first equation by cos ¢l and the second equation by sin¢l,
adding the two expressions together, and using appropriate multiple-angle

identities from trigonometry, the resulting equation for Cl becomes

1= L1
T + Eocl + §{C1C3[C°S(2¢l - ¢3)]

l._
+ CQCu[cos((i)2 -9, ¢l)]} + Enw{clcs
sin(2¢l - ¢3) + CC, sin(q>2 -4, t ¢l)} =0, (4.16)

Similarly, multiplying the first equation of (4.15) by -sin ¢l and the
second equation by cos ¢l, adding the two expressions together, and using
appropriate multiple-angle identities for trigonometry, the resulting

equation for ¢l becomes

1 1 1 . 274 .
T - §K - ZﬂCB Sln(2¢l - ¢3) + —Ez-51n(¢2-¢4+¢l)]
1 — c.C
+ Eﬂw[CS cos(2¢l-¢3) + —EI— COS(¢1+¢2-¢4)] =0, (4.17)

Using these procedures discussed above, equations for CQ, $ns CS’ $55 Cys

and ¢u can be derived. Thus, these transformed equations are

dC2 1- 1 -
Tt 50C, + -é{ClCL+ cos(¢l-¢u+¢2) - C203cos(2¢2—¢3)]

+ %natclcusin(¢l—¢u+¢2) - C,Cusin(20,-64)7 = 0



B9

4, 1 1.5

‘a—n— -3 K - E{—EQ—- Sin(¢l-¢u+¢2) - C3 Sin(2_¢2-¢3)J
1 — %1%y

+ §nw[—E;— cos(¢l—¢u+¢2) + Cscos(2¢2—¢3)] =0

dC3 1— 1

Fral 59Cy + §{C22cos(2¢2-¢3) - Clzcos(2¢l-¢3)]

- —in5[c2231n(2¢2-¢3) - ¢, %sin(2$ 4,07 = 0

16
dé c.2 c.2
Eﬁg'“ K + %{53 sin(2¢,-4,) - Ei— sin(26 -$,)]
3 3
T ¢,"
+ -l—énw[c:—s— COS(2¢2-¢3) - —C;— COS(2¢1—¢3)] =0

dC

y o 1— 1 1l -
T * 39C, - 7LC Cocos(é,+4,-¢,)] + gnulC,C,

sin(dhl + ¢2 - ¢u)] =0

de, 1,.5C 1 -1
a‘ﬁ'— - 4K + -‘I{C—q- sin( ¢l+¢2_¢u)] - 'éﬂh)[ Cq
cos(q>l * 9, - ¢u)3 =0, (4.18)

Equations (4.16), (4.17), and (4.18) are the general combustion
equations in terms of amplitudes and phase angles. From this point,

special cases can be investigated isolating certain conditions and closed-

'l . T



50

form solutions can be obtained for these cases. It is convenient to do
this in order to check the closed-form results of the special cases with
the results from the general equations (4.16), (4.17), and (4.18) when
the same conditions are imposed.

The first case to be evaluated is the case for standing waves
with no combustion effects. To simulate standing wave effect, set the
amplitudes 02 and Cu and phase angles ¢, and 9y equal to zero. This
automatically satisfies four of the eight equations (4.18). To achieve
the no-combustion effect, set the interaction index, n, equal to zero.
Also, set the correction variable, K, equal to zero since the effect of
K will be investigated separately at a later time. Imposing these con-

ditions, the governing equations reduce to

1.1 - 1 _
W + 5 o€y + 5 CiCq cos(2¢l-¢3) =0 (4.19.a)
d9; 3
a-r—]—' Y [C331n(2¢l—¢3)] =0 (‘-l-.lg.b)
dc

3, 1- 1., ]
I + 5 0Cy - 3 Cy cos(2¢l—¢3) =0 (4.19.¢)
de c.?

3 171 . _
I 3 —C-S— Sll'l(?cj)l—d)s) 0. (4.19.4)

The initial conditions imposed for this case are

cl(o) =1
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c,(0) = 0
$,00) = 414
$5(0) = ¢35, . (4.20)

To attempt a closed-form solution, let

¢, = e—%EnFl (4.21.a)
¢, = e-%BnFS (4.21.b)
g;i - e7E( o)F, + e-%En(ggi) (4.21.¢c)
ffé,z eENC S)F 4 e—%én(fig) (4.21.d)
dn 3 dn *

Substituting these expressions into equations (4.19.a) and (4.19.c) and

s s oas -%g . .
dividing through by e 20”, the resulting equations become

dr

I Py =
dnl + %_Cos(2¢l - py)e %onF Fy = 0 (4.22.a)
dr -
3 1 -%onp 2 -
I "B cos(2¢l - ¢3)e Fl =0 . (4.22.b)

Multiplying equation (4.22a) by 1/u4 and equation (4.22.b) by Fq/Fl and
adding the two equations, terms containing the cos(2¢l - ¢3)e-%6n are

eliminated. In doing so, the result becomes
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dr F, dr
1 3 3
an + Fl a—n— =0 (4.23)

Multiplying through equation (4.23) by Fl gives

(4.248)

1 2 29 -
5 [F,2 + 4F21 =0

Culiln
.3

Integrating with respect to n then dividing by 1/2, the resulting equa-

tion becomes

2 2
F 2 + UF, D, (4.25)

where Dl is a constant of integration. This constant depends upon the
initial conditiors imposed on the problem. From the initial conditions
given in (4.20) and using the transformation (4.21.a) and (4.21.b), it can
be shown that Pl(O) = 1 and F3(O) = 0. Therefore, Dy equals to 1. Thus,

equation (4,25) becomes

2 -1 _ nur 2
Fl 1 - 4F % (4.26)

Taking equation (4.26) and substituting into equation (4.22.b), then

separating variables, the resulting equation becomes

dF3 1 -%0n

_— = ¢ cos(2¢,-4,)dn (4.27)
8 1773 .
[1-4F,2]
3

Letting 2¢; - ¢, = £m, which satisfies equations (4.19.b, d), yields
cos(2¢l - ¢3) = (—l)z where £ = 0,1,2,3. . . Substituting this expres-

sion and integrating the above equation, the resulting equation becomes
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‘2°“+D23(-1) (4.28)

where D2 is a constant of integration. Using the initial condition F3(O)=

0, then, it can be shown that D, = 2/5. Substituting and taking the

hyperbolic tangent of both sides of equation (4.28), the result becomes

F, :%ﬁanh[%g(—l)ﬂ(l—e_%on)] . (4.29)

Substituting this expression into equation (4.26) and simplifying, the

resulting equation becomes
3 -
_ S
F = sech[&E) (1-e72M)7 | (4.30)

1 20

Substituting equations (4.29) and (4.30) into equations (4.21.a) and
(4.21.b), and substituting n = et and w = oe, the resulting closed-form

solution for wave amplitudes Cl and C3 are

1. £ -
¢, = ¢ B secnEEL (17 (4.31.a)
2w
ut 2 -
¢, = S framE 2 1-TE O (4.31.b)
20

To find expressions for ¢l and ¢3, substitute the relation that 2¢l-¢3=£n
into equations (4.19.b) and (4.19.d) and integrate and evaluate the con-

stants of integration with the initial conditions; the results are

%) = 939
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by 7 d3q = 24y5-L7 (4.32)

where ¢lO is a constant and ¢3 is £n radians out of phase with 2¢l. It
can be seen that a special set of initial conditions is necessary to be
consistent with this solution. A representative set is $0 7 930 T 0
which corresponds to £ = 0.

Inspection of equations (4.31) reveals that the magnitude of Cl
continually decreases with time while the magnitude of C3 first increases
and then decreases. An interesting special case of equations (4.31)
occurs in the absence of steady-state combustion (o = 0). The results of

this case are

a
1 sech[ﬁ:i%—fzﬁ

(@]
u

(—l)ﬂet]

I

1
3 5 tanh[

(@]
"

(4.33)

These results show that a disturbance in the form of the first mode is
transferred to the second mode as time increases. It is thought that this
indicates the beginning of the steepening that leads to the formation of a
shock wave. It can be seen that the presence of damping, in the form of
steady-state combustion, inhibits this process.

The second case to be investigated is that of standing waves with
gas-dynamic nonlinearities neglected. To simulate the standing wave
effect, let the amplitudes 02 and Cq and the phase angles ¢2 and ¢4 equal
zero. Again, this automatically satisfies four of the eight equations of
(4.18). To achieve omission of gas-dynamic nonlinearities, let i = Q.

Also, let the correction variable, K, be equal to zero for simplicity.
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In doing so, the resulting equations, based upon equation (4.18),

become

¢y 1. 1 -
a7r'+ E-ocl + a-nw[clca Sln(2¢l - ¢3)] =0
Sh1 alc (2 )1 =0
T T g nully cosl2e - 430 =
dc
3, Lae. - L nirec,? sin(2e, - )1 =
e + 3 0C3 - T8 nwl Cl Sln(2§b1 ¢3)] =0
oy 4 _ GF
T e kg s T 1T 0 (1.3

The initial conditions imposed for this case are

Cl(O) =1

c,(0) = 0

$,(0) = ¢4

$5(0) = ¢4, (4.35)

Let 2¢l - ¢3 = (2L + 1)n/2, £ =0, 1,2 . . . . This implies that Sin(2¢l
- ¢3) = (—l)z and cos(2¢l - ¢3) = 0. Substituting into (4.3u4) and solving
in the manner indicated previously one obtains expressions for the ampli-
tudes for Cl and C3 which are

c, = e-zwt{secﬂig ne(-H(1-e"H Ty (4.36.3)
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i ' i
c =8 2wt{tan[zg ns(—l)ﬂ(l-e 2wt)]} (4.36.b)
37 272
¢l = ¢10 (4.36.c)
by = 20, - (3%;5)n _ (4.36.d)

where ¢lO is constant and ¢3 is (2£+1)n/2 radians out of phase with 2¢l.
As in the previous solution, special initial conditlons are required to
produce this solution. A representative set is ¢lO = 0, ¢30 = -m/2, which
corresponds to £ = 0.

The secant and tangent both become infinite when their arguments
take on the value Im/2. In (4.36.a, b), the arguments of these functions

start at zero at t = 0 and have a maximum absolute value at n€/23/2.

3/2

Thus, if ne/2 < w/2, the tangent and secant never become infinite and

Cl and C3 eventually decay to zero due to the influence of the exponential
function. This is a stable situation. If, on the other hand, n€/23/2 >
w/2, the tangent and secant become infinite at t_ = (2/5)|£n[l—2gﬂ/(n€)][
causing Cl and C3 to become infinite. This is an unstable situation.

Thus, the boundary between stable and unstable behavior is indicated by

the equation
n£/23/2 =w/2, (4.37)

The stability equation in the n-e plane has the form

3
n = 2%/ = 4.L4U2/e (4.38)

This has the form of a rectangular hyperbola and is independent of @.
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For the case of traveling waves, it is more convenient to work
with the general perturbation equations expressed in modal amplitudes
in terms of the real time variables, equation (4.13). To simulate the
effect of spinning or traveling waves, let the following modal ampli-

tudes be equal. These relations are

2 1
B, = A4
B, = -A,
By = -A, (4.39)

It can be shown that substituting the relations (4.39) into equation
(4.10), expressing the results in terms of the real time variables, sub-
stituting these expressions into equation (3.18), and using appropriate

multiple-angle formulas leads to

$(0,t) = A.cos(t-0) - A_sin(t-0) + A cos 2(t-0)

1 2 3

—Aqsin 2(t-0) + « « .« . (4.40)

which has the form of a sum of traveling waves. Substituting the expres-
sions in (4.39) into equations (4.13), these eight equations reduce to
four pairs of identical equations. The four independent equations listed
below are

1

oAl+§KA2-1(AlA3+A2Au)-nw(AlAu—AzAa)]

'—J
ST
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dAz 1 - 1
rradh e~ 5 0A2 -5 KAl—l(AlAu—AQAs)+nw(A2A4+AlA3)J
3 _ 1 - 1.,, 2 , 2.1 -
e el 5 0A3+4KA4+ ul(Al —A2 )+Enw(AlA2)]
dA
I - 1. L ~(a 242
o - ¢l 5 OA,-4KA+ 5 1(AlA2)-— —gmu(Al -A,%)] . (4.u41)

By making the substitution, we have reduced to a system of four equations
and four unknowns. By solving for the modal amplitudes Aj, the modal
amplitudes Bj are readily computed by using the relations of (4.39) to
determine the entire nature of the wave form.

For the case of traveling waves omitting gas-dynamic nonlinearities,
let the amplitudes Al and A3 equal zero. Then set i, the gas-dynamic
index, equal to zero. Again, for simplicity, let the correction variable,
K, controlling physical chamber configurations, be zero., In doing so, in

terms of the transformation variable, n, the resulting equations become

dA2 1 -
-(F + > a A2 - nw[A2Aq] =0
dA
b 1l - 1 -
-—+ = - = = .4
In + 50 Au g Dw A2 0 ( 2)

which is a system of two equations and two unknown modal amplitudes. To

find an exact closed-form solution to these equations, let

—1/o'n

— 2

A2 = e Pl
_ _-%on

Au = e P2
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- - dF

2 _ -%on, 1- -%on 1

e (- > o)Fl + e e

dA - - 4r

4 _ -%on,_ 1 - -%on __2
o e (- 5 c)F2 + e T . (4.43)

Using these transformations, the procedure for solution is exactly the
same as for the standing wave case for both no combustion and no gas

dynamics. The initial conditions for this case are

1l
[

A,(0)

(4.44)

"
(@]
-

Au(O)

Substituting the expressions of (u4.42) into (4.41), the resulting equa-

tions are

- -ion
— 20N -
3 - by e 0
dr -
532-- %-n&?lze'?”” =0 (4.45)
with initial conditions
Fl(O) =1
F2(O) =0 .

Solving these equations in the manner outlined in the standing wave solu-

tions, the results are
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Fl = sec[i-/;---‘£ (1l-e %on)]
g
F, = Ef‘/._‘l[_'f-gl‘g (1-e'%6”)3 . (4.u6)
2v2 c

Expressing the results of (L.45) in terms of modal amplitudes by substi-

tuting into (4.42), the resulting equations become

—%En c[ﬁ:'ﬂg (l—e—%an)]
2

o

=
I
®

—%on -
NG, L

. = tan[—-Q—-n—w (1-e" M7 | (4.47)
2y 2 g

The results for traveling waves (4.47) are quite similar to the results
for standing waves (4.36) for the case of no gas-dynamic nonlinearities.
The same behavior can be expected as was discussed in the standing wave
case about the nature of oscillation of the modal amplitudes. The only
significant difference is the value to determine the boundary of stability
for the interaction index governing the combustion terms. The stability

condition for traveling waves is

2 T
— T3, (4.48)

Thus, the equation of the stability boundary in the n-e plane is

n=—=z- . (4.49)

Comparing equation (4.49) to (4.38) shows that the stability boundary for

the interaction index is half as great for the traveling wave case as for
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the standing wave case for any e. This will be verified in a later pre-
sentation of results of various numerical cases.

For the case of traveling waves with no combustion, let the ampli-
tudes A2 and A4 equal to zero. Then set n, the interaction index, equal
to zero, and, again, let the correction variable K equal to zero. Sub-

stituting into equations (4.u40) and transforming into variable p, the

results are

1 _
—'——dn +§0A1+A1A3 0
da
3,1- 1, 5 _
T t 30 A - AZ=0 (4.50)
with initial conditions
Al(O) =1
A3(0) =0

which again is a system of two equations and two unknown modal amplitudes.
To find an exact closed-form solution to these equations, use similar
transformations as shown in (4.42)., In doing so, and simplifying, the
results are

dF -
1 “an -
an + e FlFQ =0

2 _ L. Fonp2 o (4.51)
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with initial conditions

1
[

Fl(O) =

"
(=]

F,(0)
Solving these equations in the same manner as before, the results are

sech[l/a(l—e—%sn)]

!
"

, %-tanh[l/a(l—e_%cn)] , (4.52)

M
f

Again, expressing the results of (4.51) in terms of the modal amplitudes

of the form of equation (4.43), the resulting equations become

-3 - iy P
A. = e Ngech[1/5(1l-e M ]

-
e 20N
3 2

tanh[1/5(1-e"2°M 7 | (4.53)

The results for the traveling waves (4.52) are similar to the results

for standing waves (4.31) for the case of no combustion. A disturbance
initially having the form of the first mode eventually is transformed into
one having the form of the second mode. To compare these results for
standing waves and traveling waves to the general perturbation equations,
two computer programs were written (Appendices D and E) which numerically
evaluate the modal amplitudes of various conditions for standing and

traveling waves.
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One last special case is an investigation of the effect of the
correction variable K. In the special cases previously discussed, the
correction variable K was set equal to zero. But, in this discussion,
the correction variable K will be of primary importance in the equations.
To start this analysis, refer to equati6ns (3.21). Based upon these
equations, impose the following conditions. First, neglect combustion
effects (i.e., n = 0). Then, let us consider only the case of standing
waves (i.e., g, =8 = 0). Finally, let us neglect the steady state
burning rate (i.e., 0 = 0) and assume that the terms multiplied by eK
are larger than those multiplied by e above. This can be accomplished

by writing

eK (4.54)

-~
i

and treating Kl as a quantity of 0(1). Imposing the above conditions
and substituting equation (4.54) into the equations (3.21), the result-

ing equations become

dzfl af, af,,
[l+Kl] - + fl + 2€[f2 =t fl E?"J =0 (4.55.a)
dt
d2f2 af,
[l+4Kl] o + uf2 - efl rrads 0 (4.55.b)

with initial conditions

fl(o) =1



af

1 _
Tt—(O)—O
£, (0) =0
df2
az-{O) =0
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First, assume a straightforward perturbation solution similar to the

equations (4.6) except the functions are dependent upon the real time t.

Substituting these assumed solutions into the equations and initial con-

ditions of (4.55) and keeping terms of 0(1) and 0(e), the separated

equations become

2
d flo + 1 £ =0
at2 (1+K) 710
2
d fzo N 4 - 0
at2 (1+uKl) 20
2
d fll . ( 1 Y 2__r ¢ df10
= [- _
at2 14K, 711 (l+Kl) 20 dt
2
d f21 . ( 4 Y 1 ¢ dflo]
- L
4t2 1+uK1 21 (1+4Kl) 10 dt
with initial conditions
flo(o) =1 fll(o) =0

(4.56.a)

(4.56.b)

(4,56.c)

(4.56.4d)
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af af

10 _ 11 _
—a;—{o) =0 —527(0) =0
f20(0) =0 le(o) =0
df20(0) . ,df21(o) o

dt - dt h y

The first-order equations (4.56.a and b) can be solved by assuming the
usual assumed solution for linear differential equations. Doing this
and applying the appropriate initial conditiomns, the results for the

first-order terms are

t = cos‘—i—— t
10 Wl+Kl
£, 50 (4.57)

Substituting (4.57) into the right-hand side of (4.56.c) the equation
becomes a homogeneous linear differential equation. Solving in the

usual manner and applying the appropriate initial conditions

f .. =0 (4.58)

Substituting (4.57) into the right-hand side of equation (4.56.d), the
resulting equation becomes a linear differential equation with a particu-
lar solution. By assuming an appropriate homogeneous and particular
solution and evaluating the constants using the appropriate initial condi-

tions, the result becomes
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-¢1+4Kl 1
£, = - sim t + =— Y1+K, sin t, (4.59)
T T

Therefore, substituting equations (4.57), (4.58), and (4.59) into the
assumed perturbation solution and letting Kl = €K, the resulting equations

become

£, = cos 1, (4.60.3)
v1+Ke
-v
£, = Qi;KE L 1:;55 sin —2 ¢ - sin 2 t], (4.60.b)
Y1l+hek ' V1+Ke

Recall that in the two-variable perturbation method, fl and f2 expressed

in terms of the perturbation variables were

Hh
u

Al(n) cos £ + Bl(n) sin & (4.61.a)
f_ = A3(n) cos 2E + B3(n) sin 2¢ ., (4.61.b)

By transforming equation (4.60.a) into perturbation variables and expand-
ing the argument of the cosine function by the Taylor series and using
appropriate sum and difference trigonometric identities fl can be
expressed as

fl = cos-% Kn cos £ + sin %—Kn sin £ , (4.62)

Therefore, comparing this to equation (4.61.a), the functions Al and Bl

must be
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_ 1
Al(ﬂ) = cos 7 Xn
B.(n) = sin L xn (4.63)
" 2 '

By similar procedure, it can be shown that evaluating equation (4.60.Db)
and comparing it to equation (4.61.b), the results are

D .
A3(n) = §EK{Sln 4Xn - sin Knl

- 1
By(n) = §E?{cos Kn - cos 4Kn] , | (4.64)
To show the validity of equations (4.63) and (4.64), the problem is now
solved using equations (4.12) which are derived from equations (3.21) by

the use of the two-variable perturbation method. To reproduce the condi-

tions imposed on the problem just discussed, let there be no combustion

(i.e., n = 0), let there be mno steady-state burning rate (i.e., g =0),

and let there be only standing waves existing (i.e., A2 = Aq = B2 = Bq =
0). Imposing these conditions on equations (4.12), the resulting equa-

tions become

dAl 1 1
I s KB, + E[AlA3 + BlB3] =0
dB

1 1 1 -
T " —Q-KAl + E{AlBS - BlA3] =0
dA3

3 12 21 -
+ 4KBy + 5(B.2 - A2] =0
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1 _
L}KAS—-LTAB =0 .

181 (4.65)

In the previous solution it was assumed that the frequency correction

terms were larger than the

with this assumption the following procedure is used.

variable n = t/K, equation

dAl

dg

dB
T

’.._l

|

ja¥}

dA3

dg

dB3

dg

Assuming a straightforward

o]
"
e

gas-dynamic nonlinearities. To be consistent
By a change of

(4.65) can be rewritten as

1

1 -
1 1 B
-2- Al + -Q—K" [A1B3 - B1A3] =0
4B, + 1 [B.2 - A,2] = 0
3 8K 1 1
BA, - o A =0 (4.66)
3 4Kk 171 *
expansion of the form
1
l0+ l—<' All + . . .
1
]_O + K Bll + . 1] .
1
30 + ‘]Z A3l + . 0 .
+ i B + . . (}4.67)
30 K 31 )
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" then substituting these expressions into the equations (4.66) and keeping

terms of 0(1) and 0(1/K), the resulting separated equations become

with the

dAlO

—_t

dag

dBlo

dz

initial conditions

AlO(O)

A .(0) =

11

1 _
58170
1 -
T A0
4By, = 0
Ay = 0
1 1
3 811 7 - 2lA30R30 * BioPaod
1 1
7 Ay T E{AloBso - BloAso]
4B :.._]l[B Z_A 2:]
31 8-"10 10
YA, = 3{A B, ]
31 - 4t°10710
= 1 BlO(O) =0
=0 B,,(0) =0

(4.68.a)

(4.68,b)

(4.68.c)

(4.68.d)

(4.68.e)

(4.68.F)

(4.68.g)

(4.68.h)
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Hl
Q

AsO(O) 0 BSO(O)

i
o
.

331(0)

i
(o]

A3l(0)

Since the first-order equations are coupled, differentiate equations
(4.68.a and c) once with respect to r then substitute equations (4.68.b

and d) into these equations resulting in

2
A1y 1
Fhgg =0
dz?
d2a
30, 16A,, = 0 (4.69)
dz?

As can be seen, equations (4.69) are linear differential equations
which can be evaluated by the usual manner. In doing so and applying

the appropriate initial conditions, the resulting first-order modal ampli-

tudes are

10~

A =0 (4.70)

Knowing values for AlO and A3O’ substitute these values into equations

(4.68.b and d) and apply appropriate initial conditions., The results

become

o1 .1
BlO = sin 5z = sin §Kn

B = 0 (u,71)



Substituting the results
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of (4.70) and (4.71) into the right-hand side of

equations (4.68.e-h), the resulting equations become

Eg%l = - %’Bl; (4.72.a)
Eg%i = %'All (4,72.b)
E§%£ + ule = %-cos C (4.72.c)
S;%&._ Ay = F sin 7 , (4.72.d)

Since equations (4.72.c and d) are coupled, differentiate both equations

once with respect to ¢ and substituting equations (4.72.c and d) into the

appropriate terms of the

new set of equations, the resulting equations are

aza
31 + 16A = - E-sin z
a2 31 8
d?B
31 + 16B,. = §-cos T . (4.73)
ar2 31 8

Equations (4.73) are a set of linear differential equations with homo-

geneous and particular solutions.

Solving these equations in the usual

manner and using the appropriate initial conditions, the resulting modal

amplitudes are

1

———

24

Ay =

(sinl4z - sing) = Eé(sinuKn - sinKn)
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1 1
B31 = §E{cos§ - cosbzg) = Eﬁ{cosKn - coslKn), (4.74)

In a similar manner, the results for the modal amplitudes All and Bll can

be determined to be

11

Bll =9 (4.75)

evaluated with the appropriate initial conditions. Therefore, substitut-
ing the results of (4.70), (4.71), (4.73), and (4.74) into the assumed

perturbation solution of (4.67), the resulting modal amplitudes become

_ 1l

Al = ¢os §'Kn + . . .
R §

Bl = sin §-Kn + . 0. .

A, = —&—(sin 4Kn - sin Kn) + . . .

3 24K
1 . .
B3 = 5EK{SIH UKn - sin ¥Kn) + . . . . (4,76)

It can be seen that equations (4.76) are identical to equations (4.63) and
(4.64). This indicates that the two-variable method produces the correct
solution. Equations (4.60) indicate that the presence of K changes the
frequency of each of the first two acoustic modes and further renders the

ratio of the second frequency to the first a non-integer number in general.
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Equations (4.76) show how this effect manifests itself in the two-variable

perturbation solutiom.
These results can be used in another way.

are neglected in (4.55.a), the results are

. __.d2fl
(1+K.) + £, =0
17 4e2 1
d?-f2 af |
(l+4Kl) " + 4f2 - efl rra 0
dfl(O)
fl(O) =1, e =0, f2(0) =0

If the nonlinear terms

= 0. (4.77)

It can be easily shown that equations (4.60) constitute the exact solution

of equation (4.77). If the corresponding terms are neglected in equations

(4.65), the results are

dAl .
dn

N
B
n
o

D-ID:
3 o)
1
N -
"

o

3 1 2 2y _
a—n——‘l" leKBs'l"s—(Bl —A—-)—O
dB

3 1
T - KAy - F ARy =0

where

(4.78)
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Al(o) =1
Bl(o) =0
A,(0) = 0
B,(0) = 0 .

It can be shown that equations (4.76) are the exact solution of equation
(4.78). These facts were used to check the accuracy of the computer pro-
grams to be discussed later.

In the remainder of this thesis, a comparison of the magnitudes
of the modal amplitudes will be represented in graphical and tabular
form. Under a given set of conditions, the acoustic modal amplitude pro-
gram, the general perturbation program, and the analytical cases that
were programmed will be used and results compared. Varying certain con-
ditions will show their effect on the changes in magnitude of the mecdal
amplitudes through a set range of time which is related to maintaining
stability. TFrom these various cases, it will be determined which param-
eters and conditions have the greatest effect in changing modal ampli-
tudes and which in turn affect the stability criteria for combustion

by the methods discussed above,



Chapter 5
DISCUSSION AND PRESENTATION OF RESULTS

In this chapter, results are presented both in graphical and
tabular form which are representative of the results generated by the
programs listed in the Appendices B through E. From these representative
sets of results, basic observations will be made to observe which
parameters or conditions have the greatest effects on the problems of
stability.

In Figures 3 and 4, modal amplitudes F1 and F2 are graphically
represented versus time for a stable standing wave case. For these

figures, F,(0) = 0, F,"(0) = 1, F,(0) = 0, F "(0) = 0, 6,(0) = 0, 6, (0) =

2
0, 6,(0) = 0, GQ'(O) =0,n=235,1=1, K=0, ¢

0.1 and w = 0.1.

The step size used was 0.1. Experimentation showed that this was a small
enough step size to produce accurate results and was used throughout.

From these figures, one notices that both the first and second order modal
amplitudes decrease in amplitude with increasing time. Also, FQ, the
second order modal amplitude, tends to oscillate at twice the frequency of
Fl' These figures are based upon one set of parametric values; however,
these figures represent qualitatively the results obtained using a wide

variety of initial conditions and parametric values. In Figures 5 through

8, modal amplitudes Fy, F,, Gy, and G, are graphically represented versus

time for a stable traveling wave case. For these figures, F1(O) 0,

Fl'(O) = -1, F,(0) = 0, G,(0) =1, 6, (0) =0, G,(0) =0, G,'(0) =0,

n=15,1i=1, K=0, w=0.1and ¢ = 0.1. The general shape of the

75
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curves and the relative frequencies of oscillation are qualitatively
similar to the stable standing wave case.

In Figures 9 and 10, modal amplitudes F, and F2 are graphically
represented versus time for an unstable standing wave case with the
same conditions as the stable case except that m = 50. As can be seen,
the maximum amplitude of Fl starts to décrease then increase dramatically
for increasing time. The maximum amplitude of F, increases continuously.
In Figures 11 through 14, modal amplitudes Fl, F2, Gl’ and G2 are
represented versus time for an unstable traveling wave case. Again, the
conditions are the same as for the stable traveling wave case except that
n = 30. Drastic increases in amplitudes are observed for all the modal
amplitudes shown as time increases. The behavior is similar to the
unstable standing wave case. The period of time for traveling waves to
become unstable is about onme-half the period of time for standing waves
to become unstable. Thus, it seems that traveling waves are less
stable than are standing waves.

In Tables 1 and 2, a comparison of results is presented for modal

amplitudes F1 and F2 for a stable standing wave case. For these cases,

-

~

o

~
i

F,(0) = 0, F = 1, F5(0) = 0, F,'(0) = 0, 6,(0) = 0, Gl'(O) =0,

0, n =60, €=0.1, and w = 0.1. These tables

T
0, Gy (0)

6,(0)
quantitatively show the effect of neglecting gas dynamic non-linearities

on the accuracy of the computations. Also, a comparison can be made

between the exact solution method (Appendix B program) and the perturbation

solution method (Appendix C program). From Table 1, one can observe that
the effect of neglecting gas-dynamic nonlinearities is small where
quantitatively comparing values of the modal amplitude F,. Even though,

quantitatively, the values for the exact solutions and perturbation
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Table 1. Comparison of Results for Fy Showing Effects

89

of Gas Dynamic

:O’

Index (i) - (F; =0, F;' =1, F, =0, Fp' =0, G =0, G,' =0, Gy
G2' = 0) - Stable Cases (n = 60) - Standing Waves
i=1 i=0
] K=1 K=1
t Exact Perturbation Exact Perturbation
Solution Solution " Solution Solution
0.2 0.19699 0.18712 0.196%9 0.18702
0.4 0.38335 0.36426 0.38336 0.36386
= 0.6 0.55252 0.52540 0.55259 0.52462
! 0.8 0.69856 0.66518 0.69885 0.66400
1.0 0.81627 0.77905 0.81719 0.77758
1.2 0.90132 0.86340 0.80354 0.86186
1.4 0.95043 0.91572 0.95489 0.81443
1.6 0.96159 0.93461 0.96936 0.933%89
1.8 0.93u432 0.91986 0.94632 0.92040
2.0 0.86985 0.872u44 0.88656 0.87466
2.2 0.77125 0.79443 0.78242 0.79884
2.4 0.64330 0.68895 0.66783 0.68602
2.6 0.49211 0.56003 0.51822 0.57016
2.8 0.32469 0.41247 0.35021 0.42593
3.0 0.1u4827 0.25167 0.17115 0.26856
3.2 -0.03017 0.08340 -0.01142 0.10366
3.4 -0.20430 -0.08633 -0.19032 -0.06300
3.6 -0.36859 -0.,25158 -0.35912 -0.22566
3.8 -0.51829 -0.40659 -0.51242 -0.37879
4.0 -0.64817 -0.54604 -0.64583 -0.51727
4,2 -0.75738 -0.66519 -0.75583 -0.63655
b.u -0.839821 -0.76006 -0.83953 -0.73278
4.6 -0.89118 -0.82756 -0.89450 ~0.80297
4.8 -0.91029 ~-0.86556 -0.91868 -0.8450L
5.0 -0.8944y -0.87297 -0.91048 -0.85789
5.2 -0.84300 -0.84979 -0.86909 ~-0.84143
5.4 -0.75726 -0.79704 -0.79u483 -0.79656
5.6 -0.64071 -0.71679 -0.68959 -0.72514
5.8 -0.49885 -0.61200 -0.55708 -0.62988
6.0 -0.33868 -0.48646 -0.40279 -0.51427
6.2 -0.16734 ~0.3L466 -0.23365 -0.38244
6.4 0.00574 -0.1915¢9 ~-0.05742 -0.23%801
6.6 0.17554 -0.03259 0.11809 -0.08882
6.8 0.33582 0.12685 0.28578 0.06271
7.0 0.48221 0.28126 0.43974 0.21080
7.2 0.61134 0.42538 0.57552 0.35042
7.4 0.72042 0.55435 0.68999 0.47703
7.6 0.80682 0.66387 0.78089 0.58653
7.8 0.86778 0.75032 0.84693 0.67550
8.0 0.90042 0.81090 0.88644L 0.74121




Table 2.

Index (i) - (F; = 0, Fl' =1, Fy =

|

Gy, = 0) - Stable Cases

Comparison of Results for Fp Showing Effects
0, F,' =0, 6] =0,

(n = 60) ~ Standing Waves

of Gas Dynamic

'—
6,' = 0,6,

=1 =0
=1 =1

t Exact Perturbation Exact Perturbation

Solution Solution Solution Solution
0.2 0.00012 -0.00u485 0.00003 -0.00253
0.4 0.00113 -0.01308 0.00043 -0.00938
0.6 0.00422 -0.02223 0.00205 -0.01865
0.8 0.01060 -0.02%44 0.00602 -0.02784
1.0 0.02110 -0.03215 0.01336 -0.03424
1.2 0.03582 -0.02854 0.02471 -0.03553
1.4 0.05397 -0.01785 0.03497 -0.03023
1.6 0.07375 -0.0010u 0.05816 -0.01798
1.8 0.09260 0.02022 0.07742 0.00026
2.0 0.10749 0.04283 0.08521 0.02232
2.2 0.11543 0.06317 0.10863 0.0451yL
2.4 0.11407 0.07764 0.11493 0.06516
2.6 0.10215 0.08319 0.11198 0.078%91
2.8 0.07988 0.07788 0.09878 0.08357
3.0 0.04909 0.06128 0.07573 0.07745
3.2 0.01309 0.03461 0.04478 0.06031
3.4 -0.02375 0.00071 0.00929 0.03352
3.6 -0.05653 -0.03632 ~-0.02639 -0.00006
3.8 -0.08051 -0.07164 -0.05749 -0.03640
L.o -0.09180 -0.10031 -0.07945 -0.07083
L,2 -0.08798 ~-0.11801 -0.08865 -0.09863
L.y -0.06850 -0.12165 -0.08286 -0.11571
L.6 -0.03490 -0.10993 -0.06211 -0.11921
4.8 0.00924 -0.08353 -0.02786 -0.10793
5.0 0.05868 -0.04515 0.01610 -0.08257
5.2 0.10711 0.00077 0.06458 -0.04571
5.4 0.14796 0.0u864 0.1114y -0.00152
5.6 0.17534 0.08236 0.15041 0.04468
5.8 0.18493 0.12615 0.17593 0.08715
6.0 0.17466 0.14534 0.18383 0.120L2
6.2 0.14513 0.14699 0.17255 0.14004
6.4 0.08957 0.13035 0.14243 0.1431Y4
6.6 0.0u4352 0.08700 0.09680 0.12888
6.8 -0.01592 0.05073 0.0411 0.08857
7.0 -0.07104 -0.00295 -0.01771 0.05557
7.2 -0.11448 -0.05745 -0.07205 0.00488
7.4 -0.14027 -0.10594 -0.11471 -0.04743
7.6 -0.14458 -0.14223 -0.13988 ~-0.08488
7.8 -0.12628 -0.16158 -0.14384 -0.13189
8.0 -0.08716 -0.16128 -0.12556 -0.15352
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solutions are not exactly the same, the order of magnitude and behavior
of results is similar. From Table 2, the same observations can be made
for the behavior of F2. There is, however, more error, quantitatively,
between the results for exact and perturbation methods and a region of
qualitative inaccuracy between the exact and perturbation solutions exists
near t = 0. This takes the form of a difference in sign of F, between
results from the exact solution as compared to the perturbations solution.
This discrepency occurred also in the other calculations performed (not
shown) and will be discussed in more detail later in this chapter.

In Tables 3 and 4, a comparison of results is presented for modal
amplitudes F; and F, for a stable standing wave case. The initial
conditions for the results in these tables are F,(0) = 0, Fi‘(O) =1,
F,(0) = 0, F,'(0) = 0, G,(0) = 0, Gi'(O) = 0, 6,(0) = 0, 6,'(0) = 0,

n =140, e = 0.1, and w = 0.1. However, these tables quantitatively
present the effect of deviations of the ratio of the second acoustic
frequency to the first from the integer value of 2 (this is controlled
by the parameter K) . These results show that solutions for finite values
of X are qualitatively similar to those for K = 0. This indicates that
the ratio of the second acoustic frequency to the first does not have
to be an integer in order to produce the type of behavior observed here.
A ratio near an integer value will lead to similar results. Tables 3
and 4 also allow a comparison to the results generated by the program
in Appendix D for the approximate analytical solution (4.31). These
results presented in the last column of Tables 3 and 4 can be compared
to the fourth column in each of these tables to determine the accuracy
of (4.31). These comparisons present further evidence that the neglect
of gas dynamic nonlinearities does not have an important qualitative

effect.
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Table 3. Comparison of Results for F1 Showing Effects of the Correction
Variable (K) - (F; = 0, F;' =1, Fy =0, F)' =0, G =0, G' =0,
Gy = 0, Gp' = 0) - Stable Case (n = 40) - Standing Waves

i=1 i = i=0
K 1 K K=20

Exact Perturbation Exact Perturbation | Analytic

Solution Solution Solution Solution Solution
0.2 0.19699 0.18707 0.198670 0.19678 0.19671
0.4 0.38335 0.36396 0.38172 0.38210 0.38186
0.6 0.55254 0.52460 0.54785 0.54890 0.548u43
0.8 0.69867 0.66358 0.68903 0.69093 0.63029
1.0 0.81667 0.77635 0.79957 0.60302 0.80234
1.2 0.90247 0.85935 0.87537 0.88124 0.88075
1.4 0.95312 0.9101u4 0.91361 0.92306 0.92304
1.6 0.96639 0.92744 0.91310 0.92740 0.92820
1.8 0.94390 0.91120 0.87443 0.83468 0.89666
2.0 0.88523 0.86255 0.80001 0.82676 0.83027
2.2 0.73388 0.78374 0.69393 0.72680 0.73221
2.4 0.67411 0.67805 0.56163 0.5895u 0.60682
2.6 0.53129 0.54969 0.409u48 0.45016 0.45947
2.8 0.37154 0.40358 0.24432 0.28905 0.29627
3.0 0.20133 0.24520 0.07300 0.11102 0.12386
3.2 0.02712 0.0803% -0.09782 -0.06484 -0.05085
3.4 -0.14491 -0.08439 -0.26190 -0.23547 -0.22097
3.6 -0.30901 -0.24474 -0.41335 -0.39410 -0.37989
3.8 -0.45892 -0.39354 -0.54662 -0.53453 -0,52152
4,0 -0.59287 -0.52617 -0.65660 -0.65139 -0.64055
y,2 -0.70357 -0.63813 -0.73872 -0.74028 -0.73261
bL -0.78821 -0.72574 -0.78928 -0.79800 -0.7%446
4.6 -0.84362 -0.78623 -0.80583 -0.82264 -0.82407
4.8 ~-0.86746 -0.81785 -0.78760 -0.81364 -0.82069
5.0 -0.85848 -0.813988 -0.73571 -0.77179 -0.78480
5.2 -0.81682 -0.79266 -0.65317 -0.68920 -0.71852
5.4 -0.74409 -0.73757 -0.54464L -0.59917 -0.62456
5.6 -0.64352 -0.65697 ~-0.41585 -0.u47611 -0.50704
5.8 -0.51967 -0.55405 -0.27311 -0.33525 -0.37090
6.0 -0.37816 -0.43279 -0.12272 -0.18253 -0.22172
6.2 -0.22516 -0.29772 0.02837 ~-0.02427 -0.06554
6.4 -0.06694 -0.15382 0.17767 0.13305 0.09140
6.6 0.08056 -0.0063 0.31714 0.28307 0.24291
6.8 0.24192 0.13857 0.44298 0.41977 0.38308
7.0 0.38242 0.27867 0.55061 0.53776 0.50650
7.2 0.50795 0.40617 0.63563 0.63247 0.60850
7.4 0.61483 0.5177u 0.69408 0.70029 0.68527
7.6 0.70017 0.60967 0.72786 0.73878 0.73407
7.8 0.76080 0.67898 0.72020 0.7u667 0.75327
8.0 0.79476 0.72355 0.68609 0.72400 0.74234
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Table 4. Comparison of Results for F, Showing Effects of the Correction
Variable (K) - (Fy = 0, F,' =1, Fp =0, Fp' =0, Gy =0, Gl' = 0,
Gy = 0, GQ' = 0) - Stable Case (n = 40) - Standing Waves

i=1 i=1 i=0
K=1 K=20 K=20

t Exact Perturbation | Exact Perturbation Analytic

Solution Solution Solution Solution Solution

0.2 0.00011 -0.00400 0.00015 -0.00419 -0.00182
0.4 0.00089 -0.00986 0.00136 -0.01035 -0.006%96
0.6 0.00354 -0.0159¢9 0.00u479 -0.01587 -0.01337
0.8 0.00860 -0.02013 0.01141 -0.01856 -0.01885
1.0 0.01665 -0.02071 0.02149 -0.01626 -0.02113
1.2 0.02761 -0.01669 0.03443 -0.00838 -0.01856
1.4 0.04072 -0.00793 0.0u866 0.00438 -0.01059
1.6 0.05458 0.00u79 0.06180 0.01995 0.00208
1.8 0.06726 0.01983 0.07113 0.03529 0.01749
2.0 0.07663 0.03491 0.07416 0.04696 0.03278
2.2 0.08072 0.04750 0.06910 0.05185 0.0L4u72
2.4 0.07803 0.05521 0.05548 0.04793 0.05038
2.6 0.06793 0.05622 0.03439 0.03468 0.04776
2.8 0.05081 0.049%57 0.00841 0.01343 0.03626
3.0 0.02816 0.03542 -0.01867 -0.01282 0.01697
3.2 0.002u44 0.01507 -0.04246 -0.03978 -0.00745
3.4 -0.02323 -0.00917 -0.05871 -0.06265 -0.03313
3.6 -0.04544 -0.03425 -0.06410 -0.07695 -0.05561
3.8 -0.06088 -0.05679 -0.05687 -0.07938 -0.07067
4.0 -0.06735 -0.07356 -0.03727 -0.0685% -0.07507
u,2 -0.06307 -0.08196 -0.0076L4 -0.0u530 -0.06722
L.y ~-0.0u4802 -0.08040 0.02778 -0.01278 -0.04759%
4.6 -0.02355 -0.06854 0.06351 0.02408 -0.01872
4.8 0.00767 -0.04745 0.09363 0.05926 0.01509
5.0 0.0u187 -0.01945 0.11279 0.08668 0.048L5
5.2 0.07470 0.01210 0.11719 0.10127 0.07573
5.4 0.10173 0.04330 0.10529 0.09987 0.09206
5.8 0.11815 0.07013 0.07824 0.08191 0.0941Yy
5.8 0.12425 0.08905 0.03976 0.04959 0.08085
6.0 0.11586 0.09745 -0.00434 0.00764 0.05385
6.2 0.09462 0.09402 -0.0u4711 -0.03736 0.01700
6.4 0.06286 0.078%4 -0.08154 -0.07807 -0.02424
6.6 0.02438 0.05389 -0.10178 -0.10757 -0.06318
6.8 -0.01630 0.02182 -0.10409 -0.12058 -0.09336
7.0 -0.05322 -0.01335 -0.08754 -0.11433 -0.10952
7.2 -0.08237 -0.0u728 ~0.05u423 -0.08921 -0.10854
7.4 -0.09956 -0.07576 -0.00908 -0.04879 -0.09001
7.6 -0.10237 ~0.09523 0.04092 0.00093 -0.05639
7.8 -0.09018 -0.10322 0.08777 0.05190 -0.01267
8.0 -0.06u428 -0.09872 0.12375 0.09586 0.03434L

’!r
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In Tables 5 and 6, a comparison of results are presented for modal
amplitudes F, and F2 for an unstable standing wave showing the effect of
neglecting gas-dynamic nonlinearities. It can be seen that the gas
dynamic nonlinearities have little qualitative effect on the results.

In Tables 7 and 8, a comparison of results are presented for modal

amplitudes F1 and F, for an unstable standing wave case showing the effects

2
of K. The results for zerc and non-zero are qualitatively similar.

These tables are representative of the cases that were investigated
in the course of this research. Only cases involving standing waves were
presented. The same behavior, however, can be observed for the cases
involving traveling waves.

In Table 9, a comparison of stability boundaries is presented
based upon the interaction index (n) which is a measure of the strength
of the combustion process. For standing waves and the given conditions
shown, the stability limit for a process with gas dynamic nonlinearities
considered and K = 0 is between 45-50. When both gas dynamic non-
linearities and the correction variable are considered, the stability
limit is increased to 67.5-69. Finally, when considering only the
correction variable with no gas-dynamic non-linearity effect, the stability
limit is 72-72.5. The results show that the neglect of gas dynamic
nonlinearities slightly underestimates the stability boundary and that
the increasing K increases the stability limit.

In Table 10, a comparison of stability boundaries is presented
based upon the interaction index for traveling waves. These results provide
additional confirmation of the conclusions discussed in the previous

paragraph and also illustrate the fact that standing waves are roughly

twice as stable as traveling waves. This is consistent with the



Table 6. Comparison of Results for F, Showing Effect of the Gas
Dynamic Index (i) - (Fq = O, F1' =1, Fy = 0, FQ' =0, Gy =0,

1

Gy' =0, Gy = 0, Gy' = 0) - Unstable Case - (n = 75) - Standing Waves
i=1 i=0
K=1 K=1

t Exact Perturbation Exact Perturbation

Solution Solution Solution Solution
0.2 0.00013 -0.00548 0.00003 -0.00316
o.4 0.00124 -0.0154y 0.000564 -0.01172
0.6 0.00473 -0.02691 0.00257 -0.02333
0.8 0.01210 -0.03643 0.00752 -0.03u484
1.0 0.02443 -0.0u4077 0.01670 -0.04288
1.2 0.04197 -0.03749 0.03089% -0.04728
1.4 0.06387 -0.025518 0.049%4u -0.03793
1.6 0.08806 -0.005425 0.07263 -0.02258
1.8 0.11143 0.02061 0.0966 0.00033
2.0 0.13027 0.0438007 0.1186 0.02813
2.2 0.14082 0.07537 0.13504 0.05696
2.4 0.14005 0.09513 0.14236 0.08237
2.6 0.12628 0.10426 0.13796 0.09995
2.8 0.09967 0.10004 0.12064 0.10606
3.0 0.06242 0.08152 0.08109 0.09851
3.2 0.01860 0.0L398L 0.05192 0.07688
3.4 -0.02636 0.008166 0.0076 0.04283
3.6 -0.06636 -0.03858 -0.03628 -0.00096
3.8 -0.09548 -0.08436 -0.07362 -0.046816
4,0 -0.10889 -0.12285 -0.09877 ~0.09134
L,2 -0.10354 -0.14826 -0.10733 -0.12758
L.y -0.07873 -0.15626 -0.09688 -0.15016
L.6 -0.03636 -0.14461 -0.06742 -0.15524
4.8 0.01909 -0.11361 -0.02153 -0.14104
5.0 0.08104 -0.06617 0.03583 -0.10827
5.2 0.14148 -0.00758 0.09778 -0.06010
5.4 0.18206 0.055118 0.15638 -0.00186
5.6 0.22528 0.11399 0.20358 0.05954
5.8 0.23565 0.16121 0.23235 0.11651
6.0 0.22067 0.19016 0.23779 0.16168
6.2 0.18130 0.19633 0.21796 0.18888
6.4 0.12201 0.17793 0.17434 0.19397
6.6 0.05019 0.13633 0.11182 0.17547
6.8 -0.02482 0.075985 0.03808 0.13477
7.0 -0.09302 -0.02526 -0.03737 0.07614
7.2 -0.14503 -0.07144 -0.10448 0.006209
7.4 -0.17338 -0.140235 -0.15407 -0.06680
7.6 -0.17347 -0.19368 -0.17900 -0.13401
7.8 -0.14428 -0.22450 -0.17519 -0.18700
8.0 -0.08859 -0.22808 -0.14216 -0.21888
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Table 5. Comparison of Results for Iy Showing Effect of the Gas Dynamic
Index (i) - (Fy = 0, Fy' =1, F, = 0, F,' =0, Gy = 0. G,' =0, G, =0,
G2' = Q) - Unstable Case (n = 75) - Standing Waves
=1 i=20
=1 K=1

t Exact Perturbation Exact Perturbation

Solution Solution Solution Solution
0.2 0.19699 0.18717 0.1969¢9 0.18703
0.4 0.38335 0.38215 0.38336 0.36402
0.6 0.55250 0.52613 0.55258 0.52513
0.8 0.69847 0.69244 0.69881 0.66518
1.0 0.81592 0.80625 0.81700 0.77974
1.2 0.90030 0.86736 0.90294 0.86535
1.4 0.94803 0.92126 0.95337 0.91952
1.6 0.95671 0.94184 0.96695 0.94089
1.8 0.92557 0.92873 0.94003 0.92921
2.0 0.85572 0.88276 0.87584 0.88529
2.2 0.75039 0.80579 0.77580 0.81106
2.4 0.61484 0.70079 0.64411 0.70941
2.6 0.45593 0.57161 0.u8677 0.58410
2.8 0.28147 0.42287 0.31118 0.43963
3.0 0.09945 0.25987 0.12554 0.28107
3.2 -0.08272 0.08829 -0.06194 0.11388
3.4 -0.25864 -0.08588 -0.2u4371 -0.05620
3.6 -0.42307 -0.25668 -0.41342 -0.22350
3.8 -0.57177 -0.41827 -0.56608 -0.38241
4.0 -0.70107 -0.56512 -0.69790 -0.52773
L,2 -0.80745 -0.69228 ~-0.80594 -0.63473
L4 -0.88721 -0.79547 -0.88767 -0.75934
4.6 -0.93641 -0.87123 -0.94056 -0.83825
L.8 -0.395124 -0.91703 -0.96203 -0.88902
5.0 -0.92862 -0.93138 -0.94961 -0.91020
5.2 -0.86710 -0.91381 -0.90146 -0.90121
5.4 -0.76771 -0.86492 -0.81711 -0.86255
5.6 -0.63434 -0.78635 -0.69815 -0.79563
5.8 -0.47368 -0.68071 ~0.54872 -0.70274
6.0 -0.29439 -0.55149 -0.37551 -0.58703
6.2 -0.10588 -0.40299 -0.18717 -0.45231
6.4 0.08258 -0.22558 0.00672 -0.302%9
6.6 0.26374 -0.06815 0.19691 -0.1u4391
6.8 0.431938 0.10715 0.37555 0.01979
7.0 0.58355 0.28008 0.53682 0.18290
7.2 0.71613 0.u4L4L78 0.67707 0.34025
7.4 0.82779 0.59627 0.79u428 0.48686
7.6 0.91635 0.72909 0.88737 0.61813
7.8 0.97878 0.83897 0.95535 0.72996
8.0 1.01111 0.92224 0.99664 0.81891




Table 6. Comparison of Results for Fp Showing Effect of the Gas
Dynamic Index (i) - (F1 = O, Fq' =1, Fp = 0, F,' =0, G =0,

1

Gy =0, Gy =0, GQ' = 0) - Unstable Case - (n = 75) - Standing Waves

=1 i=0
=1 K=1

Exact Perturbation Exact Perturbation

Solution Solution Solution Solution
0.2 0.00013 -0.00548 0.00003 -0.00316
o.u 0.00124 -0.01544 0.00054 -0.01172
0.6 0.00473 -0.02691 0.00257 -0.02333
0.8 0.01210 ~-0.03643 0.00752 -0.03484
1.0 0.02443 -0.04077 0.01670 -0.04288
1.2 0.0u4197 -0.03749 0.03088% -0.0u4728
1.4 0.06387 -0.025518 0.0u49%Y4 -0.03793
1.6 0.08806 -0.005425 0.07263 -0.02258
1.8 0.11143 0.02061 0.0966 0.00033
2.0 0.13027 0.049007 0.1186 0.02813
2.2 0.1u082 0.07537 0.13504 0.05696
2.4 0.14005 0.09513 0.14236 0.08237
2.6 0.12628 0.10426 0.13796 0.09995
2.8 0.09967 0.10004 0.12064 0.10606
3.0 0.062u42 0.08152 0.09109 0.09851
3.2 0.01860 0.04984 0.05192 0.07688
3.4 -0.02636 0.008166 0.0076 0.0L4283
3.6 -0.06636 -0.03858 -0.03628 -0.00096
3.8 -0.09548 -0.08436 -0.07362 -0.046816
4.0 -0.10889 -0.12285 -0.09877 -0.09134
g, 2 -0.10354 -0.14826 -0.10733 -0.12758
.4 -0.07873 -0.15626 -0.09688 -0.15016
L.6 -0.03636 -0.14461 -0.06742 -0.15524
4.8 0.01909 -0.113061 -0.02153 -0.14104
5.0 0.08104 -0.06617 0.03583 -0.10827
5.2 0.14148 -0.00758 0.09778 -0.06010
5.4 0.19206 0.055118 0.15638 -0.00186
5.6 0.22528 0.11398 0.20358 0.05954
5.8 0.23565 0.16121 0.23235 0.11651
6.0 0.22067 0.19016 0.23779 0.16168
6.2 0.18130 0.19633 0.21796 0.18888
6.u4 0.12201 0.17793 0.17434 0.19397
6.6 0.05019 0.13633 0.11182 0.175u47
5.8 -0.02482 0.07595 0.03808 0.13477
7.0 -0.09302 -0.02526 -0.03737 0.07614
7.2 -0.14503 -0.07144L -0.10448 0.006209
7.4 -0.17338 -0.140235 -0.15u407 -0.06680
7.6 -0.17347 -0.19368 -0.17900 -0.13401
7.8 -0.14428 -0.22450 -0.17519 -0.18700
8.0 -0.08858% -0.22808 -0.14216 -0.21888
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Table 7. Comparison of Results for F1 Showing the Effects of the
Correction Variable (K) - (F4 = 0, Fl' =1, Fp = 0, FQ' =0, G =0,

1

G1 =0, Gy =0, G,' = 0) - Unstable Cases (n = 70) - Standing Waves

i = i=1 i=0
K K K=20
Exact Perturbation Exact Perturbation | Analytic
Solution Solution Solution Solution Solution
0.2 0.19699 0.187155 0.19670 0.19687 0.19675
0.4 0.38335 0.36u462 0.38172 0.38261 0.38217
0.6 0.55251 0.52587 0.58791 0.55028 0.54942
0.8 0.69850 0.66615 0.68878 0.69371 0.69249
1.0 0.81604 0.78072 0.79865 0.807867 0.80630
1.2 0.90066 0.86596 0.87280 0.88811 0.88696
1.4 0.94887 0.91928 0.90775 0.93226 0.93184
1.6 0.95842 0.93925 0.90166 0.93878 0.93468
1.8 0.92863 0.92554 0.85477 0.90772 0.91061
2.0 0.86067 0.87904 0.76962 0.84061 0.84612
2.2 0.75771 0.80166 0.65109 0.74802 0.74903
2.4 0.62481 0.69648 0.50590 0.61107 0.62333
2.6 0.46860 0.56735 0.3419y 0.45807 0.47407
2.8 0.29658 0.41903 0.16733 0.26849 0.30714
3.0 0.11649 0.25679 -0.01027 0.10616 0.12906
: 3.2 -0.06441 0.08639 -0.184186 -0.05313 -0.05327
§ 3.4 ~-0.239873 -0.08618 -0.34860 -0.25962 -0.23280
§ 3.6 -0.40414 ~0.25u497 -0.49854 -0.42949 -0.40262
: 3.8 -0.55318 -0.41415 -0.62912 -0.58151 -0.55621
4.0 -0.68301 ~0.55829 -0.73533 -0.70960 -0.68766
4,2 -0.78998 -0.68250 -0.81197 -0.80859 -0.79192
L.u -0.87041 -0.78258 -0.85399% ~-0.87449 -0.86494
4.6 -0.82055 -0.85525 -0.85736 -0.90458 -0.90388
4.8 -0.93689 -0.89811 -0.,82008 -0.89755 -0.90718
5.0 -0.91671 -0.90981 -0.74306 -0.85356 -0.87463
5.2 -0.85886 -0.89005 -0.63045 -0.80213 -0.80736
5.4 ~-0.76447 ~-0.83962 -0.48925 ~0.66264 -0.70785
5.6 ~0.63724 -0.76029 -0.32818 -0.52308 -0.57982
5.8 -0.,u48340 -0.65486 -0.15634 -0.36111 ~-0.42807
6.0 -0.31100 -0.52691 0.01809 -0.18308 ~0.25835
6.2 -0.12888 -0.38083 0.18852 -0.076u5 -0.07712
6.4 0.05445 -0.2215%6 0.34985 0.1076u4 0.10864
6.6 0.23170 -0.05445 0.4984YL 0.37u422 0.29176
: 6.8 0.39723 0.11485 0.63023 0.46032 0.46509
5 7.0 0.54707 0.28072 0.74089 0.68003 0.62177
7.2 0.67846 0.43759 0.82500 0.81052 0.75551
7.4 0.78817 0.58027 0.87632 0.89873 0.86085
| 7.6 0.87687 0.70394 0.88888 0.95061 0.93330
= 7.8 0.93868 0.80u57 0.85847 0.96357 0.96962
. 8.0 0.97109 0.87877 0.78419 0.93647 0.96786




Table 8.
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Comparison of Results for Fy Showing the Effects of the

Correction Variable (K) - (Fy = 0, Fl' =1, Fy = 0, FQ' =0, Gy = 0,
G4 =0, 06y =0, GQ' = 0) - Unstable Cases (n

70) - Standing Waves

i 1 i=1 i1i=20
K i K=20 K=20

t Exact Perturbation Exact Perturbation | Analytic

Solution Solution Solution Solution Solution
0.2 0.00013 -0.00527 0.00017 -0.00562 -0.00336
0.4 0.00120 -0.01466 0.00165 -0.01557 -0.01219
0.6 0.00u456 -0.02534 0.00618 -0.02603 -0.02343
0.8 0.01160 -0.03411 0.01544 -0.03276 -0.03305
1.0 0.02332 -0.03789 0.03024 -0.03218 -0.03708
1.2 0.03992 -0.03451 0.05013 -0.02232 -0.03264
1.4 0.06057 -0.02299 0.07306 -0.01862 -0.01865
1.6 0.08330 -0.003386 0.09555 0.021911 0.00367
1.8 0.10517 0.02047 0.11324 0.0L915 0.03093
2.0 0.12271 0.04682 0.12170 0.0726Y4 0.05810
2.2 0.13242 0.07126 0.11751 0.08675 0.07S47
2.4 0.13150 0.08922 0.09917 0.0870u6 0.08978
2.6 0.11839 0.097153 0.06770 0.071414 0.08535
2.8 0.09328 0.11651 0.0267S 0.04063 0.06502
3.0 0.05822 0.07467 -0.01761 -0.001408 0.03053
3.2 0.01701 0.04468 -0.05827 -0.04828 -0.01346
3.4 -0.02528 0.00567 -0.08789 -0.091%86 -0.06005
3.6 -0.06295 -0.03775 -0.10041 -0.12426 -0.10122
3.8 -0.09049 -0.079%4 -0.09221 -0.13827 -0.12918
4.0 -0.10337 -0.11504 -0.06290 -0.12986 -0.13785
b,2 -0.09872 -0.13779 -0.01566 -0.09854 -0.12403
L.y -0.07590 ~-0.1442 0.0429S -0.0L785 -0.08825
L.,6 -0.03665 -0.13261 0.10404 0.01493 ~-0.03490
4.8 0.01u487 -0.1032 0.15731 0.07988 -0.02828
5.0 0.07254 -0.05894 0.19315 0.13602 0.09131
5.2 0.12585 -0.00478 0.20424 0.17311 0.14357
5.4 0.17637 0.05266 0.18706 0.183575 0.17558
5.6 0.20783 0.10617 0.14284 0.1639822 0.18070
5.8 0.21824 0.14862 0.07764 0.11562 0.15640
6.0 0.20519 0.17409 0.00147 0,0u509 0.10495
6.2 0.16849 9.17865 -0.0733 -0.03703 0.03331
6.4 0.11514 0.16089 -0,13397 -0.11757 -0.0478Y4
6.6 0.04883 0.12229 -0.16872 -0.182839% -0.12564
6.8 -0.02090 0.06705 -0.17346 -0.22122 -0.18709
7.0 -0.08483 0.00165 -0.14308 ~-0.22u468 -0.22125
7.2 -0.13429 -0.06594 ~-0.08205 -0.19089 -0.22111
7.4 -0.16228 -0.12723 0.00095 -0.12367 -0.18485
7.6 -0.164y2 -0.17433 0.09312 -0.03255 -0.11690
7.8 -0.13960 -0.20087 0.17849 0.06839 -0.02652
8.0 ~-0.09020 -0.21857 0.24522 0.16276 0.07753
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Table 9. Comparison of Stability Boundaries Based on the Interaction

Index (n) - (Fy = 0, Fy' =1, F, =

0,

1
F,' =0, 6y =0, Gy = 0,

Gy = 0, GQ' = 0) - Standing Waves - Epsilon - 0.1

Stability Boundaries

Gas Dynamic Index Exact Solution Perturbation Solution
Correction Variable n - Stable - Unstable n - Stable - Unstable
i=1 67.5 - 69 67.5 - 68

K=1

i=0 72 - 72.5 72.5 - 73
K=1

i=1

K =20 45 - 50 b5 - 50
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Table 10. Comparison of Stability Boundaries Based on the Interaction
Index (n) - (F; = 0, Fy' = -1, Fp = 0, Fp' =0, 6 =1, G, =0,
Gy = 0, G2' = 0) - Traveling Waves - Epsilon - 0.1

Stability Boundaries

Gas Dynamic Index Exact Solution Perturbation Solution
Correcticn Variable n - Stable - Unstable n - Stable - Unstable

i=1

K =1 27.5 - 28 31.5 - 32

i=20

K=1 30 - 31 36.35 - 36.5

i=1

K =0 25 - 30 25-30
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approximate analytical stability equations (4.31) and (4.52). The
perturbation method tends to predict slightly higher stability limits
than the exact sclution method for both standing and traveling waves.
Within the accuracy of the tabulated values, this is apparent only in
the first two rows of Table 10.

In Table 11, a comparison of the éffect of different initial
conditions imposed on the stability boundaries for both standing and
traveling waves i1s presented. From the results of two sets of imitial
conditions for each case, it can be seen that the varying of initial
conditions has no significant effect on the stability boundaries for
both standing waves or traveling waves.

In Table 12, the variation of the stability limit with € is
presented for standing waves. From Table 12, the results show that the
smaller the term epsilon the greater the stability 1imit. Therefore,
the order term has a significant effect on the interaction index. In
Chapter 4, a relation was proposed for the case of 1 = 0 and K= 0
which was n = C/e where C is a constant. Assuming the validity of the
relation, the values for this constant are given for each given epsilon
and interaction index. This shows that, in general, C is a weak function
of €.

In Table 13, a comparison of the effect of € is presented for
traveling waves when both gas dynamic nonlinearities and correction
variables are considered. Again, the results show that the smaller the
term epsilon, the greater the stability limit. The perturbation method
again predicts slightly greater stability limits than does the exact
solution method. Therefore, again, the order term has a strong effect

concerning the stability of combustion.




Table 11.

Imposed for Standing and Traveling Waves for i

Epsilon = 0.1

(a) Standing Waves - 1.

Comparison of the Effect of Different

Fp =0, F' =1, F,=
Gy = 0, G =0, Gy =
|
Fy =1, F =0, F,=
G1:O,G1'=O,G2=

0,
0,

0,
0,
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Initial Conditions

1 and K = 1
F2' = 0
G2'=O

T
F, =0
Gy =0

Stability Boundaries

Initial Condition

Exact Solution

Perturbation Solution

Sets n - Stable - Unstable n - Stable - Unstable
1. 67.5 - 69 67.5 - 69
2. 65 - 70 65 - 70
(b) Traveling Waves - 1. Fq = 0, Fl' = -1, Fp = 0, FQ' =0
Gy =1, Gy =0, Gy =0,0Gy =0
2. Fy =1, Fl' =0, Fy=0,F, =0
Gy =0, G' = -1, 06, =0, Gy =0

Stability Boundaries

Initial Condition

Exact Solution

Perturbation Solution

Sets n - Stable - Unstable n - Stable - Unstable
1. 27.5 - 28 31.5 - 32
2. 27.5 - 28.5 31 - 31.5




Table 12. Comparison of the Effects of the Order Term Epsilon -

(Fy, = 0, F,' =1, Fy,=0,F) =0,06 =0, 6" =0,0 =0,

GQ' = 0) - Standing Waves - when 1 = 1, K =1
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Stability Boundaries

Exact Solution Perturbation Solution Constant
Epsilon n - Stable - Unstable n - Stable -~ Unstable C = ne
0.05 107.5 - 110 107.5 - 110 5.5
- 0.1 67.5 - 69 67.5 - 69 6.9
0.2 48,5 - 49.5 48.5 - 49,5 9.8




Table 13. Comparison of the Effects of the Order Term Epsilon (F1 = 0, Fl' =

F)' =0,6, 51,6, =0,0,=0,8

1

2

1

= 0) Traveling Waves - when 1 = 1, K

Stability Boundaries

Exact Solution

Perturbation Solution

Constant C = ne

Constant C = ne

Epsilon n - Stable - Unstable n - Stable - Unstable (Exact Solution) (Perturbation Sol)
0.05 51 - 52 52 - 53 2.575 2.625
0.1 27.5 - 28 31.5 - 32 2.775 3.175
0.2 15.5 - 16 18.5 - 19.5 3.15 3.75

hoT
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Thus, from these representative tables of results, it is observed
that the correction variable is important in the stability of standing
waves, but does not play a major role in the stability of traveling waves.
It is observed that the gas dynamic nonlinearities seem to have little
influence on the stability of either standing or traveling waves. It
is observed that initial conditions of ;he modal amplitudes have little
or no influence in the stability of either standing or traveling waves.
And finally, it is observed that the order term epsilon and, the inter-
action index governing the strength of combustion in the process are
strongly coupled thus affecting the limits of stability.

Before completing this chapter, it is desired to investigate the
sign discrepency mentioned previously between the exact and perturbation
solutions for f which occur near t = 0. For simplicity, it will be
assumed that i = K= 0 and that for t << 1 the first modal amplitude can
be represented with sufficient accuracy by f1 = sint. Then, the
equation for f2 will be solved and the result simplified for t << 1,
This will be done first for w = 0 and then for w # 0. For ¢ = O,

(3.21) leads to

d2f _
5E32-+ 4f2 = % ewn {} - cos?% (5.1)

with initial conditions

1
o

f2(0)

£, (0)

"
[ew]
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Evaluating the homogeneous and particular solutions by the usual manner

and evaluating the constants, the results become

1 - .
f2 = 7g ewn [1 - cos?t t 51n2€J . (5.2)

In terms of the perturbation parameters (4.1), equation (5.2) can be

written as

£, = %—- wn [é(i - cos2g) - n sinQ%]_ (5.3)

To the order of approximation € which the perturbation solution should
model, equation (5.3) becomes

1
£, = - 16

wnn sin2€ + 0(e). (5.1)
By expanding equation (5.2) into a Taylor series expansion of three terms,

equation (5.2) becomes

£, = eont’ 4 . . . (5.5)

which is always positive.

Therefore, the exact method for small time will yield f2 modal
amplitude always as a positive quantity.

By imposing identical conditions to the perturbation equations

(4.12), the result becomes
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dB .
-—Z'dn = - 1_6 wn (5.6)
with the condition
BQ(O) = 0.
Solving equation (5.6),
B, = - 1—-Emn. (5.7)
2 16
Recalling that f2 = B2 sin2f, the result becomes
£, = - 1 wnn sin2Z + 0(e)
2 16 (5.8)

which is identical to the result of equation (5.4) for the wave equation
solution. Thus, the perturbation method gives the correct result. It
can be seen that for t << 1 the exact solution predicts a positive f2
and by inspection of equation (5.8), the perturbation method predicts a
negative f2. This is precisely the behavior observed in the numerical
solutions.

For w # 0, a similar analysis can be performed. The appropriate
equation for f, is now

2

a2f as

307 + w Tt + ufz %Ewn[ 1 cos?t] (5.9)
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with conditions

{1
(o]

f2(0)

£, (0)

H
(@]

Solving the homogeneous and particular solution by the usual manner and

evaluating the appropriate constants the result becomes

t + Ig-s&n - % EN sinQé}
. (5.10)

Expanding (5.10) for small w into the appropriate Taylor series, expanding

and neglecting terms of 0(w) leads to

1
f2‘16

gwn [? - cos2t - t sith} (5.11)
which is identic¢al to (5.2).
By imposing the identical conditions on the perturbation equation

(4.12), the resulting equation become

—2 + % gB ="1§ @n (5.12)

N
[N

with the condition
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BQ(O) = 0.

Solving equation (5.12) by the usual manner, evaluating the constants,

and transforming the perturbation variables to real time variables

i D
£ = E[i - e /2‘“] sin 2t . (5.13)

This is always negative for t << 1. Expanding the exponential function

by the Taylor series expansion and neglect terms of o(w) leads to

= “hw $
f2 = g N sin 28+ 0(e) (5.14)
which is identical to (5.8).

To observe the behavior of equation (5.10) for small time,
expand this equation into a Taylor series of 0(t%). Expanding and
grouping terms according to their order of magnitude, the terms of

0(1), 0(t), 0(t2), 0(t3) vanish. Therefore, £, is comprised of terms

2

from O(tu) which is

(5.15)

Again, for any small time t, f2 is always positive since tu is always
positive. Neglecting higher powers of w, the resulting equation becomes
equation (5.5) for the undamped case. Again it can be seen that the
exact and perturbation methods predict opposite signs for f2 when t << 1.

These results are based on approximations and cannot be considered
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definitive. They do, however, lend plausibility to the numerical results
discussed earlier. It is believed that this sign discrepancy is due
to the inability of the perturbation solution to accurately represent
the exact solution for t << 1 and not due to any error in the computer

program used to compute the perturbation solution.



Chapter 6
CONCLUSION AND RECOMMENDATIONS

The primary objective of this présentation has been the development
of analytical techniques to solve the problem of combustion instabilities
occurring in an annular combustion chamber. The analytical techniques
used were the modified Galerkin method applied to the acoustic wave
equations which yielded a set of time-dependent modal amplitude equations
and the two-variable perturbation method which yield a set of time-
dependent equations which approximated the behavior of the first set of
equations. Both methods produced results which were relatively easy to
apply and used the Runge-Kutta algorithm which required little computation
time. An alternative approach to solve this problem would be a finite
difference approach. However, difficulties can be foreseen in the
development of the finite difference equations modelling the problem
along with the complications occurring due to the boundary conditions of
the problem. Thus, the benefits of the methods discussed in this thesis
can be appreciated.

From the numerical and graphical presentation of results in Chapter
5, the following observations can be made. First, the effect of the gas-
dynamic nonlinearities seems to be small in both methods of analysis for
velocity sensitive combustion. This point can be observed from a
quantitative comparison of the tabular results or by observing the effects

of this condition on the stability boundaries. Second, the effect of the
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correction variable modelling the physical boundaries of the chamber seems
to have a significant effect in both methods of analysis for velocity
sensitive combustion. By including the effect of this correction variable,
a significant increase occurs in the interaction index which is the
criteria for the stability of the system. However, this effect seems to
be more significant for the standing wa;e case than the traveling wave
cases. The effects of initial conditions for the time dependent equations,
the numerical value for the burning rate and step size of integration,
seem to have very little significance in the measure of the stability
limits of velocity sensitive combustion. However, the order term epsilon
has a strong effect upon the stability of the problem. This is to be
excepted since the order term is the measure of the effect of non-
linearities occurring in the system. The increase in this value corresponds
to a decrease in the stability limit which is physically reasonable.

In this study, the effect of time delay of the combustion process
was neglected. However, time delay has been found in other studies to
be an important phenomena in correctly modelling the actual problems of
velocity sensitive combustion. It is recommended that this effect can
be incorporated by including the corresponding terms with j = 1 in the
acoustic wave equations (3.20). A corresponding set of perturbations can
then be derived to account for time delay and both these equations and
equations (3.20) can be numerically evaluated by modifing the existing
Runge-Kutta programs presented in the Appendices. It is also recommended
that an experimental program be developed to measure the effects of
velocity sensitive combustion in an annular combustion chamber. Once
achieving this goal, one could correlate the measurement results to the
analytical results that have been presented to ascertain the validity of

this analysis.
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Since instability of combustion is sensitive to small changes in
engine geometry and operating conditions, a particular engine must be
subjected to a large number of firings before its designers can say
confidently that it is free from instability. With a large engine such
testing can account for a substantial part of development costs. Herein
lies the importance of devising reliablé theories of instability and
inexpensive tests of a propellant's acoustical characteristics. Until
instability of combustion is understood well enough so that it can be
eliminated while an engine is in the design stage, rocket engines must
continue to be intensively tested for‘ stability--particularly when
the lives of astronauts will eventually depend on safe, reliable

operation of the engine [17].
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APPENDIX A

GENERAL TIME DELAY FUNCTION
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GENERAL TIME DELAY FUNCTION

The development and nature of the time-delay function is of the
same form of the convolution integral for impulse response in vibration

theory. The general form of the time délay function is

t dmo

w(t) = j’ J(t - £) E’E—_dg - (A.1)
0

A simple illustration of the time delay function is in the case of a

finite step function J(t).

J(t)

1

T

(some specific time constant)

Figure Al. Step Function J(t)
From the figure, the step function J(t) is defined as

1 t <1
J(t) =
0 t>1 (A.2)

.

Therefore, substituting some time delay (t - £) for time t, the result is

119
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1}

J(t - &)

or

J(t - &)
0 t-1>1T . (A.3)

Graphically representing equation (A.2) results in Figure A2.

J(t - &)

1bme m—m—— - — =

0 t -8 t

Figure A2. Step Time Delay Function J(t - &)

Substituting into the general time-delay integral the particular step

function in terms of the non-dimensional variable &

g ' (A1)

Therefore, simplifying equation (A.3)

w(t) = wo(t) - wo(t - 1) (A.5)

where wo(t) is a generalized function of time and wo(t - 1) is

functional time delay.



APPENDIX B

RUNGE-KUTTA PROGRAM OF THE MODAL

AMPLITUDE WAVE EQUATIONS
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1411 /72.5F224UL/72.,01P+V1/2.,G2P+4Wl/2.)
C
D Uz{a gL (T4 H/2,sFL14P2/2 .0F2¢02/2.501452/249532432/72.5F1P
L T2/2.5F 2220027 2,501P4V2/2.»G2P¢H2/2,)
3324 T2(T+H/2.0FL4P2/2 0 Fl4027/2e5G1 472725 52¢52/2.9F1P
Lo T272.552P4¢ U272 .5GlP4 2 /2.2G2P4H2/24)
Qi=Ax T3 TOH/ 2.5 FLaP2/2esF2402/2.5G1432/245529352/724,F1P
14027200 F224052/2,.551P+d272.552P4n2/24)
SI=ACEL(T4H/2esFLlaP2/24sF 2432724201 432/24552452/7245F1P
1eT2/72.,F2P4U2/2.,G1P¢V2/2.5G2P+4d2/2,)
T3=H*ZS(THH/2.,C14P2/2,,F24327209GLl4732/2e2032432/2.5F1P
LeT2/2.5F2P402/2.s0G1P+4272.5G2P4n2/2.)
UI=HeES(Te /2, ,F14P22/2.0F2402/2e00143272690524527/2e2F 1P
LeT2/72.5F2P¢U2/2,5G1P4V 2/ 24552P4W2/24)

VI=H®e ST (Trd/ 205 FL4P2/2.9F2402/2.»G14R27/24502¢52/2.5F1P

[RS]
Y

I



U
O

199

124

LaT2/20sF2P4U2724oCLlP4V2/24»02P 482724
A=A XD AT H /202 FL4P2/20sF 240272251 432/24»G2¢52/25F1P
1+T12/2.,F22+4¢U2/2.5G1P4V2/245G2P+4H2/24)

veuxwmuﬁﬂ‘x.ﬂw‘vw.ﬂm¢mw.m~+mw-mm¢uw.ﬂHm.ﬁw‘ﬁmu‘cw.mﬂv
1443, 32P443)
SU=H*E2(TeH)FI+P3,F2+423,GL4F 3,G2483,F 124 T73,F2P4¢U3»n51P
14y35320443) '
RA=H*C3(T+H»F14P 3, F2+33,014RK3,G24533,71P¢T3,F27P+U3,G1°
[+Vv3,32P+H3)

SU=A«Tu(TeH,FL4P3, F2433,514R3,52453,F124T3,F2P4U3,512
14v3,0224¢43)

Ta=H2TS(T+ 4, F14P3,F24233,651470%,52453,71P+T73,F224U3,G1P
14v3,52P443)

4=t nxZH (TeHsFLlapP3,F2423,GL4F3,52483,F124T3,F20¢U3s512
14V3,5322443)

VA=H* 7 (T H,FL+P 3, F2+403,G51473,02453,71P+T3,F2P+40L3,G1?
14935, 532P4H3)
AL=H*TE(T+d,F1+4P 3, F2403,G61473,G2+453,71P4T3,F224¢9U3»G17
14v3,37P+43)

L=C1+((PL 42, %2242, %P34P4)Y/5.)
e=F24( (21 ¢2.%0242.%33¢04)/0.)
{=510C(RL 42, 22242, %83 414)/35, )
2324 ((5142.%35242.%33454)/0.)
FL1o=F1P4((T142,=T242.«T734T4)/5.)
F2R=F2Pe((Ult2.%U242.%U34Ub)/ 6a)
GlIP=31P+( (VL4220 J242.503494)/0.)
D2PA(( WLl +2 % W2+2.%W3enb) /o)

ACI L ==F 124 EPSa( ~FLlap2=51i#532¢0.3«( 51 P232P4F1P*F2P))
ACP2=2=F224 2254 (=025« (5 *G1~"1*F1)40.254(F1P*r1P=G1P
1+«CiP))
ACP I ==G1P4EPS*(=Fl1aG32eF2x51+0.5«(FlPx32P=GlP*F2P))
ACPL==52247P5x(N,3%F 1253140 .,5#51P%G1P)
T=T+H4
L=iL+1
iF (L E3. 3) 50 T3 110
33 Ty 19)

ASITS (99390) ToF1sF2,531552,A2P1,ACP2,4C0P3ACPS
FLARMAT (IXsF 3,4 s3X0FLl 365, 2%,F 10050 3X F1le552XsF104555X
LrFLNeDs2%XsF 10532 3Xs510.552X2F10e3)

L=1
CCT InUE
CaLtL £XIT

END
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14027205334 U2/245A43Y2/72,,344H2/72,)
RIZHOIZ(TAH /2028 14P2/2e9B31 402722024527 242324527245A3
14727205334 U2/72.5044¥2/2,,344%W2/2,)
SI=HNCL{T+H/2.5814P2/2.»B81 4027245824532/ 2e9324532/24943
LeT2/72.,330027205803V2/72.5344n2/2.)
TizH*ES(TeH /2.5 A14P2/2e5314¢027249A2¢R27/24232452/249473
VAT2/240334 27200 ALtN2/ 2493840 272.)
RES wmna.xxm.‘»»+mm\w.‘wM‘um\m.»»w+mm\m.‘mm*mm\m.‘»w
1472/2.23340U2/72 86402 72,,8444272,
V3zHXTT(ToH/2.,414P22/2.,31422/2 ..bu‘Jm\m..wm.mm\m..»u
1eT2720033402/7200 8044272534442/ 20)
Al=Hel 3(TaH/2 .0 A1AP2/2 0581302/ 2,,482452/2 4532 2/2.»A3
LeT2/2 533+ U2/2ep00402/2»B444272.)
C
PazH*T [ ({Te 4o A1 +P 3, 3140347245 3,32¢53,43+4T73,334U3-85%4y3
1244 Ad3)
FJLE=HxE2(T+Hrp AL *P 35314733, 42453,32¢53,143¢T730334U35444vy3
lrche43)
SOU=H*® I3 (T+H»A1 4P 3,31 403, A2+752,324535,334¢T73,33¢L3,44493
1,3444A43)
SUzHHTL(T+eH,AL+4P 3531403, 82¢53,32+453,434T3,33+4U3,444¢V3
1rE44+43)
Ta4=H*ZS5(T+HsAL4P3I» 31403, A24RFT+32453,434¢T3,334U35,434y3
1,34443)
G=HaEAR(T+Hr A14P 3s31¢03pA24F3,32453,434T73,334,32844V3
w‘r +43)
Ja=AeZ7(T+H,A1+P3,31473,42+53,32453»43+473533+35444V¥3
_.vwboiuw
=R E3(TeAp AL 403,31 +403, 824535,32453,434T3,334U3,0044y3
‘mr.zwu
C
Al1=A14((2L 42 4P 242, %P 34P4 )/ %)
F3L=314 (1424242433404 )/6.)
AZTA20 ((P1 42,3242, %x534¢Rk4L) /")
32232+ ((5142.%324¢2.,x53454)/c.)
AI=AT4((TL 2267242, xT34T4)/5
33334 (UL+2.2)242, 203+ UL) /5,
AbG= A4+ ((J142%y242. %3¢ yh)/0s)
Bh=344( (442 %R242.2434wh)/6,)
C
T=T+4
C
FLOJ)=ALl«ZAS(TI+31#SIN(T)
Gl(J)=A22C0S5(T)+432+STH(T)
FZ(J)=A3%CNS(2.«T7)433«5IN(2.¢ 1)
G2(J)Y=A4e005(2,xT)+434*SIN(2%T7)
C
L=L+1l
IF (L «E3. 3) 30 70 110
30 T3 199
110 WFITE (HKsS55) ToAL1,31082,832s43533584,34




1293

53 FL~4AT (1X»FZ2.%s 3X»F10. wumx-ﬂ ~o.uvwx‘ 13e592X2F10e523%
IrF 1) eSs2XsF10a3s3X»Fl0e52X5F10.5)
L=1
L0C CONTINLE
c
L=1
T=2
WEITZ (5,41) ’
L1 FORHAT (IXo /77751 X 3Xp ' TIMI Y, IX» el 01 OX» ' F27,11X»"G 1Y
[»12X58G2', /)
C
00 238 J = 1,NvAX
T=T+H
L=L+1
IF (L .%3. 3y 50 T3 210
GC Y3 223
210 AFRITES (53+300) THFLLOY»F20)51C03)9532C08
306 FORAAT (1X,F2,4,3X0F10.552%X57 1055 34sF10e5,2%5F13.5)
L=t
275 CONTINGE
C

caLL IX1tir
END
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C

-

L

QOO

(e N oKy

(o]

a¢d o,

GaryY 4 MCOINALD
ANALYTIC SOLY
JI4ZNSION FL(520),F2(53D)
?1=3.1413725

A=).1
XIHOQ_U
NMAX =500
ZF3=7.1
W3A%=C.1
L=1

B

—

2

INITIAL CONDITION

(A1

J

I

N

GAS D

REAY (5,5)
FQa4aT (I5,F1{.5)

READY (5,1

10 FORMAT (4&F
ASITE (5.1

15 FCaMaT (11X
ARITE (=»l

16 FOA4AT (1X
ARITE (5,2

20 FCER4AT (1X

s IX 4 Xrt23
2rFl04bs/)
AFITE (5693

3C FC~r4AaT (1X
1,733,154,
23 12C J =
Ae=XJ4ERS

1F (XN 53

IF (XN <27

NC GAS DYNAAT

o

COMT INLE

R

-

S=

T
U

VMO NO 2 <

— i H
(V] M= ) ra
. 4

~~

Tt

e ||
[ LR R V]

1

-
[}

*

MY

« 35355
T
/C7350J
P(=D.53
kv
INCU)Y/
n/2.32
=PHI1

TION=STANDING WAVE CASE

YNAMIC INDEX AND INTERACTIIN INDIX

T»XN

w

) CLs03,PHIYI,PHES

1%.4)

5) 1

» 1GAS DYNAMIZ INDEX',IB)

5Y) XN

» VINTERACTION INDEX'»F7e25//7)

%) C1,C3»PHIL,PHIS

U INTITIAL CONDITIONSYS /7010 X0 86X, "LV 1).4,/
CoF LN b/l XX ' PHII Y FiDeds/ s L XsbXptPH]I
)

22X%X5 17

1,N14X

e JeoANDe I <EQ. 1) GO T3 60O
. DDIODZD. H om“UO Ou mu ﬁ& .WO

#XMEE P35 (=l )rn))

DeStnBARYXJ)

)
n3AREXS)

cnsScud)
36 )x2

TME , LGX s ALY »13Xs " A3, 13X, 1310,12X
PEL 12X, 1030, LIX,TPHIL 1%, "PHIZ!S/)
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_

OGO
<
o

PHI 322 o *PHIL1=((P.4Ry41.)/2. )P
g1 T 220

q
m.
Ammm»n-w.v~*gv\ﬁm.naw»mv
um.nmxuﬁuo.m»xw»m»xgv
CS«CT
2./(ZXP(CUYLL/ZEXP(ZUY)
Ca=TXP(=DeS*nIaAR*xy)
Cl=CAxCY
c (EXP{ZUY=1a/IXPCCUYYZCEXPCCUY L /TXP(CUDD
(Za/2.) %2
1=PHIL
3=2e%24T1=24xP]

TINUE

CL1*COS(PHILD

SLEIINCPHIL)
=2 3&«CAS(2HIZ)
=C3I«SIN(PHTS)
(J)=A1*CASIXII+31+5IN(XY)
F203)=43420S5(2 2 KJ)+4334STIN(2.%XJ)

F (L «E3« 2)Y 33 TQ 3549¢

e=lel

33 T 1w)

TIvZI=xJ

AFITS (5+35002) TIMENAL,A35,315335C1503,P411,PHI3
FCTMAT (1XpF 7.6 3XsF10e5s3%Xef 104500 % F1l34554%X,F1N0.555
pFl 2eB303Xs F10a354XsF10.5,4X571043)

L=1

CONT INUE

Ae=3.

L=1

ARITEZ (5,5000)

FOrRMAT (11X 2770 1 X 33X ITIMET L 2Xp Yp L 1, 15X ' 2%,/)
CC 3034 = Lannax

Xo=(JeH

IF (L +E3. 2)Y G3 T3 740

L=L+1

20 T3 303

TivzZ=%XJ

ARITI (5,7000) TIMEL,FL(J)I»F2C3)
FOAMAT (1X5F7.453X0F10.5,7X5513.507)
L=1

CCNTINGE

132
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CAaLL
END

XIT
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APPENDIX E

PROGRAM OF EXACT SOLUTION

OF TRAVELING WAVE CASE
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L

c

a0 o

OO0

O OO
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GARY H MCTONALD
ANMALYTIC SOULLTION=TRAVELLING wd/ CASE
SIMEINSTION FL1(392),F2(503),51(520)»32(397)
PI=3.1415325
H=J.1
X
NMA
ZF5=3.
A3daxr=1.1
I

3}
XKoo .
H e
[V o]

-
[

L=
READ IN 3AS DYWA4IC INDEX AND INTERACTION INDEZX

=~ZADY (5s3) T1.X
5 F3F4a7 (15,710
INTTIAL CONDITIONS

AD (3212) ALl»A2Z2sA3Zs AL
AT (4F10.4)
z (5»13) 1
MAT (1X»'5335 DYNAMIC TROEZX'S,IS)
m (5s10) XN
AT (LX,TINTERACTION INDSX "»F7e297/7/7)
TE (3020) AlsAa2,a3,404
20 FCRAAT (LY, " INITIAL CONDITIONS'>/Z/7,1Xs8Xs "2l 10etr/
TolX ol Xot A2 5C10abs/slXruXo a3, FiCo4s/s1XsbXsA4t
2,F1%44.7)
AabR1TZ (3533)
30 FCAAAT (LA rbXs ' TIMESs 14X ot AL 515X, A2, 15XKs 033,17
1o'4410,/)
00 1233 J = 1,4vAX
Xo=XJ+4E P>
IF (XN efFde OeedNDe I EQ. 1) GO TD KO
IF (XN o5 e 2)eedNDe I %224 3) 530 T2 59

R
16 F
A

L]

ND O3A3 DYMAMICS

SINCUI/COS ()

4=(A/2.526842)1
3 Ty 235

50 CCHTING
S=0, 70711+ ZPSx XN
T=1e=CAP(=0.5%d3AF®XJ)
u=53#*T
J=1./723501)
WX (=25 %Ad3 A xXJ)
AZ=wmy
Vi
A
a

NC Z043USTIN



<

[P]

ay

290

504

5304

118

(459

0

v

v

N

L%

4

0 <

U -
1 V=
> 2 MmM
e
~ A

0

Im ~

TR N3ARREYL)

Ve
»
(9]

-

f

"
AV N R B |

i
o~ o~

X2 (=2, 5¢«n3 AR xXJ)
AxCH

Car2.y»Ci
3 299

A2

Al

“14

B

"
Lon
(%]

TV a8 N e M N & T =N
~ A~~~ t

—

«Z3e 2) 35 T3 50563

—

- - e~
—

3 193
=XJ

(e s e
Ty

"
("‘n

T (IXsF700,7X, (4 (FL2

AT TN e MO ML MO T W W WM e OB OO00
Do‘l

i TINUE

>

t ]
]

[

.

(]

bl’)wh‘

n

A (5-5933)
Fa
» 1 G2', /)

23 33C J = 1,494X
XJ=XJ+H

IF (L «23. 2) 63 T3 730
L=L~+1

30 T 337

TIMZ=XxJ

.\ﬁrxunncvba /EXP{CU))

TXP(ZUI =L /7EXPCCUI I 7L CXP( LU+l /2

SY=A1.20S5(XJ)¢31«S5INCXD)
;yn»v*vo (XJ)+432«SIN(XJ)
JI=AZ&CIS(2. 0 XJ)433«SIN(2.*xXJ)
_vu»n.tm.n_mﬁm.»x,:fwon,wwzﬁm

(55930) TIMZ,»AL1,A425,A3,A4
«0s53X)))

TE
(..»,— (IXp 7775 1LX5 3Xp 0TI MY, 2K,
X»

XPL(CyY))

Pl 10X 'F 2051525

ARITE (5,7000) TIMILFL1(J)»F2¢u)»i5lCd)»r52()

FASAAT (IXpFTobr2XpFloade7Xsm 10e358

Lt=1
CONTINUE
TALL EXIT
IAND

X»F11

«527 K sF 17
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APPENDIX F

PRESENTATION OF ACOUSTIC

PRESSURE CALCULATIONS

137



138

ACQOUSTIC PRESSURE DERIVATION

To calculate expressions for acoustic pressure, recall equation

(2.48) which stated

—< —g—ii+ L 52(1_12 + QG%%+ Vo - %))

This equation represents the unsteady state deviations of acoustic
pressure. When expanding equation (F.1l) into a Taylor series expansion,

the resulting equation becomes

3 - > 312
p=p=1-¢ 3%-+ g2 [—%(u2 + $¢ - Vo) U %%—+ 5 (5%) ]

A=t

E (F.2)

Recall that the steady state solution was represented in equation (2.35) by

2
(/ 2 (a_oz))
= oz
p=e :
When expanding (F.3) into its Taylor series expansion, the result becomes

_ =\ 2
p=1- %2 (éi) .. . (F.u4)
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where p is the steady state acoustic pressure. Therefore, the difference
in general acoustic pressure and steady state pressure can be expressed
by subtracting equation (F.4) from (F.2). For this investigation, a
restriction on the velocity potential ¢ was that it was a function of 9

and t only. In doing this, the pressure difference equation becomes

- _ -a_i)- i 3¢ 2 3¢ 2
P-P= €% T3 [‘(ﬁ) +(§'€) _ (F.5)

Using the same Fourier series expansion for the velocity potential ¢ as
expressed in equation (3.18), the acoustic pressure difference equation
(F.5) can be expressed in terms of the product of modal amplitudes and
trignometric function in the transverse 6 direction. Substituting the
appropriate forms of equation (3.18) into equation (F.5) and simplyfying,

the resulting pressure difference equation become

- af (dg dg  af af )]
P-P.|._1 . Lol 2412
& Tt [ (518, + &18)) * 5\ a@ * I a A oos®

df dg  dg af
1 _2 —1 2 sin®

dg
- L - - 1 - 2
¥ [' &t e[ (f18) - fog)) v 3gr & " I

dg ij;(dg ]
A 1 L i
+ I + e[zflgi + % T /\3% sin20 , (F.6)
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Since the coefficients in equation (F.6) are functions of time only,

these coefficients have been included in the calculations of the program
in Appendix B. Thus, for any given angle 6, values for the modal
amplitude at any given time range can be calculated therefore determining

the acoustic pressure difference of that desired location.



