17,415 research outputs found

    Studies of pi-Bonding by X-Ray Crystal Structure Analysis

    Get PDF
    X-ray crystal structure analyses and refinements are described of six compounds having structures in which a second-row element (aluminium, silicon, phosphorus, or sulphur) is bonded to four atoms of a first-row element (nitrogen or oxygen). The dimensions of molecules and ions of this type provide information leading to an improved understanding of the pi-bonding in compounds of the second-row elements. Least-squares refinement was used in each case to obtain atomic co-ordinates and molecular dimensions, together with the estimated standard deviations of these quantities

    Further development of a method for computing three-dimensional subsonic viscous flows in turbofan lobe mixers

    Get PDF
    Procedure for computing subsonic, turbulent flow in turbofan lobe mixers was extended to allow consideration of flow fields in which a swirl component of velocity may be present. Additional, an optional k-lambda turbulence model was added to the procedure. The method of specifying the initial flow field was also modified, allowing parametric specification or radial secondary flow velocities, and making it possible to consider initial flow fields which have significant inlet secondary flow vorticity. A series of example calculations was performed which demonstrate the various capabilities of the modified code. These calculations demonstrate the effects of initial secondary flows of various magnitudes, the effects of swirl, and the effects of turbulence model on the mixing process. The results of these calculations indicate that the initial secondary flows, presumed to be generated within the lobes, play a dominant role in the mixing process, and that the predicted results are relatively insensitive to the turbulence model used

    Characterisation of bacterioplankton communities in the meltwater ponds of Bratina Island, Victoria Land, Antarctica

    Get PDF
    A unique collection of Antarctic aquatic environments (meltwater ponds) lies in close proximity on the rock and sediment-covered undulating surface of the McMurdo Ice Shelf, near Bratina Island (Victoria Land, Antarctica). During the 2009–10 mid-austral summer, sets of discrete water samples were collected across the vertical geochemical gradients of five meltwater ponds (Egg, P70E, Legin, Salt and Orange) for geochemical and microbial community structure analysis. Bacterial DNA fingerprints (using Automated Ribosomal Intergenic Spacer Analysis) statistically clustered communities within ponds based on ANOSIM (R = 0.766, P = 0.001); however, one highly stratified pond (Egg) had two distinct depth-related bacterial communities (R = 0.975, P = 0.008). 454 pyrosequencing at three depths within Egg also identified phylum level shifts and increased diversity with depth, Bacteroidetes being the dominant phyla in the surface sample and Proteobacteria being dominant in the bottom two depths. BEST analysis, which attempts to link community structure and the geochemistry of a pond, identified conductivity and pH individually, and to a lesser extent Ag109, NO2 and V51 as dominant influences to the microbial community structure in these ponds. Increasing abundances of major halo-tolerant OTUs across the strong conductivity gradient reinforce it as the primary driver of community structure in this stud

    A very deep Chandra observation of Abell 1795: The Cold Front and Cooling Wake

    Get PDF
    We present a new analysis of very deep Chandra observations of the galaxy cluster Abell 1795. Utilizing nearly 750 ks of net ACIS imaging, we are able to resolve the thermodynamic structure of the Intracluster Medium (ICM) on length scales of ~ 1 kpc near the cool core. We find several previously unresolved structures, including a high pressure feature to the north of the BCG that appears to arise from the bulk motion of Abell 1795's cool core. To the south of the cool core, we find low temperature (~ 3 keV), diffuse ICM gas extending for distances of ~ 50 kpc spatially coincident with previously identified filaments of H-alpha emission. Gas at similar temperatures is also detected in adjacent regions without any H-alpha emission. The X-ray gas coincident with the H-alpha filament has been measured to be cooling spectroscopically at a rate of ~ 1 Solar Masses/ yr, consistent with measurements of the star formation rate in this region as inferred from UV observations, suggesting that the star formation in this filament as inferred by its Hα\alpha and UV emission can trace its origin to the rapid cooling of dense, X-ray emitting gas. The H-alpha filament is not a unique site of cooler ICM, however, as ICM at similar temperatures and even higher metallicities not cospatial with Hα\alpha emission is observed just to the west of the H-alpha filament, suggesting that it may have been uplifted by Abell 1795's central active galaxy. Further simulations of cool core sloshing and AGN feedback operating in concert with one another will be necessary to understand how such a dynamic cool core region may have originated and why the H-alpha emission is so localized with respect to the cool X-ray gas despite the evidence for a catastrophic cooling flow.Comment: 14 Pages, 10 Figures, Resubmitted to ApJ after first referee report, Higher Resolution Figures available upon reques

    Turbine stator flow field simulations

    Get PDF
    The increased capability and accessibility of modern computers, coupled with increasingly sophisticated and accurate numerical and physical modeling, has led to a marked impact of numerical simulations upon current turbine design and research problems. The turbine section represents a considerable challenge as it contains significant regions of complex three-dimensional flow, including both aerodynamic and heat transfer phenomena. The focus of the present effort is the development of an efficient and accurate three-dimensional Navier-Stokes calculation procedure for application to the turbine stator and rotor problems. In particular, an effective procedure is sought which: (1) adequately represents the flow physics, (2) allows for sufficient resolution in regions of small length scale, and (3) has sufficiently good convergence properties so as to allow use on a regular basis

    Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica

    Get PDF
    New evidence in aerobiology challenges the assumption that geographical isolation is an effective barrier to microbial transport. However, given the uncertainty with which aerobiological organisms are recruited into existing communities, the ultimate impact of microbial dispersal is difficult to assess. To evaluate the ecological significance of global-scale microbial dispersal, molecular genetic approaches were used to examine microbial communities inhabiting fumarolic soils on Mt. Erebus, the southernmost geothermal site on Earth. There, hot, fumarolic soils provide an effective environmental filter to test the viability of organisms that have been distributed via aeolian transport over geological time. We find that cosmopolitan thermophiles dominate the surface, whereas endemic Archaea and members of poorly understood Bacterial candidate divisions dominate the immediate subsurface. These results imply that aeolian processes readily disperse viable organisms globally, where they are incorporated into pre-existing complex communities of endemic and cosmopolitan taxa

    Z(2)-Singlino Dark Matter in a Portal-Like Extension of the Minimal Supersymmetric Standard Model.

    Get PDF
    We propose a Z2-stabilized singlino () as a dark matter candidate in extended and R-parity violating versions of the supersymmetric standard model. interacts with visible matter via a heavy messenger field S, which results in a supersymmetric version of the Higgs portal interaction. The relic abundance of can account for cold dark matter if the messenger mass satisfies GeV. Our model can be implemented in many realistic supersymmetric models such as the next-to-minimal supersymmetric (SUSY) standard model and nearly minimal SUSY standard model

    Switching dynamics of spatial solitary wave pixels

    Get PDF
    Separatrices and scaling laws in the switching dynamics of spatial solitary wave pixels are investigated. We show that the dynamics in the full model are similar to those in the plane-wave limit. Switching features may be indicated and explained by the motion of the (complex) solitary wave amplitude in the phase plane. We report generalization, into the domain of transverse effects, of the pulse area theorem for the switching process and a logarithmic law for the transient dynamics. We also consider, for what is the first time to our knowledge, phase-encoded address of solitary pixels and find that a near-square-wave temporal switching pattern is permitted without (transverse) cross switching

    Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds.

    Get PDF
    The numerous perennial meltwater ponds distributed throughout Antarctica represent diverse and productive ecosystems central to the ecological functioning of the surrounding ultra oligotrophic environment. The dominant taxa in the pond benthic communities have been well described however, little is known regarding their regional dispersal and local drivers to community structure. The benthic microbial communities of 12 meltwater ponds in the McMurdo Sound of Antarctica were investigated to examine variation between pond microbial communities and their biogeography. Geochemically comparable but geomorphologically distinct ponds were selected from Bratina Island (ice shelf) and Miers Valley (terrestrial) (<40 km between study sites), and community structure within ponds was compared using DNA fingerprinting and pyrosequencing of 16S rRNA gene amplicons. More than 85% of total sequence reads were shared between pooled benthic communities at different locations (OTU0.05), which in combination with favorable prevailing winds suggests aeolian regional distribution. Consistent with previous findings Proteobacteria and Bacteroidetes were the dominant phyla representing over 50% of total sequences; however, a large number of other phyla (21) were also detected in this ecosystem. Although dominant Bacteria were ubiquitous between ponds, site and local selection resulted in heterogeneous community structures and with more than 45% of diversity being pond specific. Potassium was identified as the most significant contributing factor to the cosmopolitan community structure and aluminum to the location unique community based on a BEST analysis (Spearman's correlation coefficient of 0.632 and 0.806, respectively). These results indicate that the microbial communities in meltwater ponds are easily dispersed regionally and that the local geochemical environment drives the ponds community structure
    corecore