1,489 research outputs found

    Large-scale Correlation of Mass and Galaxies with the Lyman-alpha Forest Transmitted Flux

    Full text link
    We present predictions of the correlation between the Lyman-alpha forest absorption in quasar spectra and the mass within \sim 5 Mpc/h (comoving) of the line of sight, using fully hydrodynamic and hydro-PM numerical simulations of the cold dark matter model supported by present observations. The observed correlation based on galaxies and the Lya forest can be directly compared to our theoretical results, assuming that galaxies are linearly biased on large scales. Specifically, we predict the average value of the mass fluctuation, , conditioned to a fixed value of the Lya forest transmitted flux delta_F, after they have been smoothed over a 10 Mpc/h cube and line of sight interval, respectively. We find that /sigma_m as a function of delta_F/sigma_F has a slope of 0.6 at this smoothing scale, where sigma_m and sigma_F are the rms dispersions (this slope should decrease with the smoothing scale). We show that this value is largely insensitive to the cosmological model and other Lya forest parameters. Comparison of our predictions to observations should provide a fundamental test of our ideas on the nature of the Lya forest and the distribution of galaxies, and can yield a measurement of the bias factor of any type of galaxies that are observed in the vicinity of Lya forest lines of sight.Comment: Submitted to ApJ, 41 page

    Simulating Reionization: Character and Observability

    Full text link
    In recent years there has been considerable progress in our understanding of the nature and properties of the reionization process. In particular, the numerical simulations of this epoch have made a qualitative leap forward, reaching sufficiently large scales to derive the characteristic scales of the reionization process and thus allowing for realistic observational predictions. Our group has recently performed the first such large-scale radiative transfer simulations of reionization, run on top of state-of-the-art simulations of early structure formation. This allowed us to make the first realistic observational predictions about the Epoch of Reionization based on detailed radiative transfer and structure formation simulations. We discuss the basic features of reionization derived from our simulations and some recent results on the observational implications for the high-redshift Ly-alpha sources.Comment: 3 pages, to appear in the Proceedings of First Stars III, Santa Fe, July 2007, AIP Conference Serie

    How to measure redshift-space distortions without sample variance

    Full text link
    We show how to use multiple tracers of large-scale density with different biases to measure the redshift-space distortion parameter beta=f/b=(dlnD/dlna)/b (where D is the growth rate and a the expansion factor), to a much better precision than one could achieve with a single tracer, to an arbitrary precision in the low noise limit. In combination with the power spectrum of the tracers this allows a much more precise measurement of the bias-free velocity divergence power spectrum, f^2 P_m - in fact, in the low noise limit f^2 P_m can be measured as well as would be possible if velocity divergence was observed directly, with rms improvement factor ~[5.2(beta^2+2 beta+2)/beta^2]^0.5 (e.g., ~10 times better than a single tracer for beta=0.4). This would allow a high precision determination of f D as a function of redshift with an error as low as 0.1%. We find up to two orders of magnitude improvement in Figure of Merit for the Dark Energy equation of state relative to Stage II, a factor of several better than other proposed Stage IV Dark Energy surveys. The ratio b_2/b_1 will be determined with an even greater precision than beta, producing, when measured as a function of scale, an exquisitely sensitive probe of the onset of non-linear bias. We also extend in more detail previous work on the use of the same technique to measure non-Gaussianity. Currently planned redshift surveys are typically designed with signal to noise of unity on scales of interest, and are not optimized for this technique. Our results suggest that this strategy may need to be revisited as there are large gains to be achieved from surveys with higher number densities of galaxies.Comment: 22 pages, 13 figure

    Dark energy and curvature from a future baryonic acoustic oscillation survey using the Lyman-alpha forest

    Full text link
    We explore the requirements for a Lyman-alpha forest (LyaF) survey designed to measure the angular diameter distance and Hubble parameter at 2~<z~<4 using the standard ruler provided by baryonic acoustic oscillations (BAO). The goal would be to obtain a high enough density of sources to probe the three-dimensional density field on the scale of the BAO feature. A percent-level measurement in this redshift range can almost double the Dark Energy Task Force Figure of Merit, relative to the case with only a similar precision measurement at z~1, if the Universe is not assumed to be flat. This improvement is greater than the one obtained by doubling the size of the z~1 survey, with Planck and a weak SDSS-like z=0.3 BAO measurement assumed in each case. Galaxy BAO surveys at z~1 may be able to make an effective LyaF measurement simultaneously at minimal added cost, because the required number density of quasars is relatively small. We discuss the constraining power as a function of area, magnitude limit (density of quasars), resolution, and signal-to-noise of the spectra. For example, a survey covering 2000 sq. deg. and achieving S/N=1.8 per Ang. at g=23 (~40 quasars per sq. deg.) with an R~>250 spectrograph is sufficient to measure both the radial and transverse oscillation scales to 1.4% from the LyaF (or better, if fainter magnitudes and possibly Lyman-break galaxies can be used). At fixed integration time and in the sky-noise-dominated limit, a wider, noisier survey is generally more efficient; the only fundamental upper limit on noise being the need to identify a quasar and find a redshift. Because the LyaF is much closer to linear and generally better understood than galaxies, systematic errors are even less likely to be a problem.Comment: 18 pages including 6 figures, submitted to PR

    Gaussian Behavior of the Number of Summands in Zeckendorf Decompositions in Small Intervals

    Full text link
    Zeckendorf's theorem states that every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers Fn{F_n}, with initial terms F1=1,F2=2F_1 = 1, F_2 = 2. We consider the distribution of the number of summands involved in such decompositions. Previous work proved that as nn \to \infty the distribution of the number of summands in the Zeckendorf decompositions of m[Fn,Fn+1)m \in [F_n, F_{n+1}), appropriately normalized, converges to the standard normal. The proofs crucially used the fact that all integers in [Fn,Fn+1)[F_n, F_{n+1}) share the same potential summands. We generalize these results to subintervals of [Fn,Fn+1)[F_n, F_{n+1}) as nn \to \infty; the analysis is significantly more involved here as different integers have different sets of potential summands. Explicitly, fix an integer sequence α(n)\alpha(n) \to \infty. As nn \to \infty, for almost all m[Fn,Fn+1)m \in [F_n, F_{n+1}) the distribution of the number of summands in the Zeckendorf decompositions of integers in the subintervals [m,m+Fα(n))[m, m + F_{\alpha(n)}), appropriately normalized, converges to the standard normal. The proof follows by showing that, with probability tending to 11, mm has at least one appropriately located large gap between indices in its decomposition. We then use a correspondence between this interval and [0,Fα(n))[0, F_{\alpha(n)}) to obtain the result, since the summands are known to have Gaussian behavior in the latter interval. % We also prove the same result for more general linear recurrences.Comment: Version 1.0, 8 page

    Benford Behavior of Zeckendorf Decompositions

    Full text link
    A beautiful theorem of Zeckendorf states that every integer can be written uniquely as the sum of non-consecutive Fibonacci numbers {Fi}i=1\{ F_i \}_{i = 1}^{\infty}. A set SZS \subset \mathbb{Z} is said to satisfy Benford's law if the density of the elements in SS with leading digit dd is log10(1+1d)\log_{10}{(1+\frac{1}{d})}; in other words, smaller leading digits are more likely to occur. We prove that, as nn\to\infty, for a randomly selected integer mm in [0,Fn+1)[0, F_{n+1}) the distribution of the leading digits of the Fibonacci summands in its Zeckendorf decomposition converge to Benford's law almost surely. Our results hold more generally, and instead of looking at the distribution of leading digits one obtains similar theorems concerning how often values in sets with density are attained.Comment: Version 1.0, 12 pages, 1 figur

    Evidence for Quadratic Tidal Tensor Bias from the Halo Bispectrum

    Full text link
    The relation between the clustering properties of luminous matter in the form of galaxies and the underlying dark matter distribution is of fundamental importance for the interpretation of ongoing and upcoming galaxy surveys. The so called local bias model, where galaxy density is a function of local matter density, is frequently discussed as a means to infer the matter power spectrum or correlation function from the measured galaxy correlation. However, gravitational evolution generates a term quadratic in the tidal tensor and thus non-local in the density field, even if this term is absent in the initial conditions (Lagrangian space). Because the term is quadratic, it contributes as a loop correction to the power spectrum, so the standard linear bias picture still applies on large scales, however, it contributes at leading order to the bispectrum for which it is significant on all scales. Such a term could also be present in Lagrangian space if halo formation were influenced by the tidal field. We measure the corresponding coupling strengths from the matter-matter-halo bispectrum in numerical simulations and find a non-vanishing coefficient for the tidal tensor term. We find no scale dependence of the bias parameters up to k=0.1 h/Mpc and that the tidal effect is increasing with halo mass. While the Lagrangian bias picture is a better description of our results than the Eulerian bias picture, our results suggest that there might be a tidal tensor bias already in the initial conditions. We also find that the coefficients of the quadratic density term deviate quite strongly from the theoretical predictions based on the spherical collapse model and a universal mass function. Both quadratic density and tidal tensor bias terms must be included in the modeling of galaxy clustering of current and future surveys if one wants to achieve the high precision cosmology promise of these datasets.Comment: 14 pages, 4 figures, 1 tabl

    Seasonal and Spatial Patterns Differ Between Intracellular and Extracellular Antibiotic Resistance Genes in Urban Stormwater Runoff

    Get PDF
    Antibiotic resistance is a public health threat that is exacerbated by the dispersion of antibiotic resistance genes (ARGs) into aquatic environments. Urban stormwater runoff has been recognized as a source of and a mechanism by which intracellular ARGs (iARGs) can be transported into receiving environments. The prevalence and behavior of extracellular ARGs (eARGs) in stormwater, however, has yet to be considered. This study quantified four iARGs and eARGs under baseflow and stormflow conditions. Urban stormwater runoff was found to be a source of all the ARGs examined, with the absolute concentration of all iARGs and two eARGs (ermF and tetC) increasing significantly (p \u3c 0.05) between baseflow and stormflow. The occurrence of iARGs and eARGs in stormwater runoff was also investigated across three seasons to differentiate temporal trends. All eARGs were found to be most abundant in the fall, while the iARGs did not display a consistent seasonal trend. Following, spatial patterns of the ARGs were elucidated by targeting four sampling locations, including direct runoff from a curbside storm inlet and a stormwater outfall, and two receiving environments, the Menomonee River and Lake Michigan. Stormwater was found to have the largest impact, in terms of the percent increase in ARG concentrations between baseflow and stormflow, on the outfall location where on average the iARGs and eARGs increased 16% and 12.3%, respectively. The variability in seasonal and spatial trends between the iARGs and eARGs suggests a difference in sources and transport mechanisms of the ARGs into the environment. Moreover, the results of this study revealed that eARGs are relevant contaminants to consider when determining the threat of antibiotic resistance originating from stormwater runoff
    corecore