research

Gaussian Behavior of the Number of Summands in Zeckendorf Decompositions in Small Intervals

Abstract

Zeckendorf's theorem states that every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers Fn{F_n}, with initial terms F1=1,F2=2F_1 = 1, F_2 = 2. We consider the distribution of the number of summands involved in such decompositions. Previous work proved that as nβ†’βˆžn \to \infty the distribution of the number of summands in the Zeckendorf decompositions of m∈[Fn,Fn+1)m \in [F_n, F_{n+1}), appropriately normalized, converges to the standard normal. The proofs crucially used the fact that all integers in [Fn,Fn+1)[F_n, F_{n+1}) share the same potential summands. We generalize these results to subintervals of [Fn,Fn+1)[F_n, F_{n+1}) as nβ†’βˆžn \to \infty; the analysis is significantly more involved here as different integers have different sets of potential summands. Explicitly, fix an integer sequence Ξ±(n)β†’βˆž\alpha(n) \to \infty. As nβ†’βˆžn \to \infty, for almost all m∈[Fn,Fn+1)m \in [F_n, F_{n+1}) the distribution of the number of summands in the Zeckendorf decompositions of integers in the subintervals [m,m+FΞ±(n))[m, m + F_{\alpha(n)}), appropriately normalized, converges to the standard normal. The proof follows by showing that, with probability tending to 11, mm has at least one appropriately located large gap between indices in its decomposition. We then use a correspondence between this interval and [0,FΞ±(n))[0, F_{\alpha(n)}) to obtain the result, since the summands are known to have Gaussian behavior in the latter interval. % We also prove the same result for more general linear recurrences.Comment: Version 1.0, 8 page

    Similar works

    Full text

    thumbnail-image

    Available Versions