116 research outputs found

    Decoding Neural Activity to Assess Individual Latent State in Ecologically Valid Contexts

    Full text link
    There exist very few ways to isolate cognitive processes, historically defined via highly controlled laboratory studies, in more ecologically valid contexts. Specifically, it remains unclear as to what extent patterns of neural activity observed under such constraints actually manifest outside the laboratory in a manner that can be used to make an accurate inference about the latent state, associated cognitive process, or proximal behavior of the individual. Improving our understanding of when and how specific patterns of neural activity manifest in ecologically valid scenarios would provide validation for laboratory-based approaches that study similar neural phenomena in isolation and meaningful insight into the latent states that occur during complex tasks. We argue that domain generalization methods from the brain-computer interface community have the potential to address this challenge. We previously used such an approach to decode phasic neural responses associated with visual target discrimination. Here, we extend that work to more tonic phenomena such as internal latent states. We use data from two highly controlled laboratory paradigms to train two separate domain-generalized models. We apply the trained models to an ecologically valid paradigm in which participants performed multiple, concurrent driving-related tasks. Using the pretrained models, we derive estimates of the underlying latent state and associated patterns of neural activity. Importantly, as the patterns of neural activity change along the axis defined by the original training data, we find changes in behavior and task performance consistent with the observations from the original, laboratory paradigms. We argue that these results lend ecological validity to those experimental designs and provide a methodology for understanding the relationship between observed neural activity and behavior during complex tasks

    Assessing the application of a geographic presence-only model for land suitability mapping

    Get PDF
    Recent advances in ecological modeling have focused on novel methods for characterizing the environment that use presence-only data and machine-learning algorithms to predict the likelihood of species occurrence. These novel methods may have great potential for land suitability applications in the developing world where detailed land cover information is often unavailable or incomplete. This paper assesses the adaptation and application of the presence-only geographic species distribution model, MaxEnt, for agricultural crop suitability mapping in a rural Thailand where lowland paddy rice and upland field crops predominant. To assess this modeling approach, three independent crop presence datasets were used including a social-demographic survey of farm households, a remote sensing classification of land use/land cover, and ground control points, used for geodetic and thematic reference that vary in their geographic distribution and sample size. Disparate environmental data were integrated to characterize environmental settings across Nang Rong District, a region of approximately 1,300 sq. km in size. Results indicate that the MaxEnt model is capable of modeling crop suitability for upland and lowland crops, including rice varieties, although model results varied between datasets due to the high sensitivity of the model to the distribution of observed crop locations in geographic and environmental space. Accuracy assessments indicate that model outcomes were influenced by the sample size and the distribution of sample points in geographic and environmental space. The need for further research into accuracy assessments of presence-only models lacking true absence data is discussed. We conclude that the Maxent model can provide good estimates of crop suitability, but many areas need to be carefully scrutinized including geographic distribution of input data and assessment methods to ensure realistic modeling results

    cis sequence effects on gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics) provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in <it>cis </it>on gene expression (<it>cis </it>sequence effects) in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting <it>cis </it>sequence effects and the proportion of gene expression variation explained by <it>cis </it>sequence effects using three different analytical approaches, and compared our results to the literature.</p> <p>Results</p> <p>We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of <it>cis </it>sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning) to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p < 0.05) association with gene expression. Using the literature as a "gold standard" to compare 14 genes with data from both this study and the literature, we observed 80% and 85% concordance for genes exhibiting and not exhibiting significant <it>cis </it>sequence effects in our study, respectively.</p> <p>Conclusion</p> <p>Based on analysis of our results and the extant literature, one in four genes exhibits significant <it>cis </it>sequence effects, and for these genes, about 30% of gene expression variation is accounted for by <it>cis </it>sequence variation. Despite diverse experimental approaches, the presence or absence of significant <it>cis </it>sequence effects is largely supported by previously published studies.</p

    Land Suitability Modeling Using a Geographic Socio-Environmental Niche-Based Approach: A Case Study from Northeastern Thailand

    Get PDF
    Understanding the pattern-process relations of land use/land cover change is an important area of research that provides key insights into human-environment interactions. The suitability or likelihood of occurrence of land use such as agricultural crop types across a human-managed landscape is a central consideration. Recent advances in niche-based, geographic species distribution modeling (SDM) offer a novel approach to understanding land suitability and land use decisions. SDM links species presence-location data with geospatial information and uses machine learning algorithms to develop non-linear and discontinuous species-environment relationships. Here, we apply the MaxEnt (Maximum Entropy) model for land suitability modeling by adapting niche theory to a human-managed landscape. In this article, we use data from an agricultural district in Northeastern Thailand as a case study for examining the relationships between the natural, built, and social environments and the likelihood of crop choice for the commonly grown crops that occur in the Nang Rong District – cassava, heavy rice, and jasmine rice, as well as an emerging crop, fruit trees. Our results indicate that while the natural environment (e.g., elevation and soils) is often the dominant factor in crop likelihood, the likelihood is also influenced by household characteristics, such as household assets and conditions of the neighborhood or built environment. Furthermore, the shape of the land use-environment curves illustrates the non-continuous and non-linear nature of these relationships. This approach demonstrates a novel method of understanding non-linear relationships between land and people. The article concludes with a proposed method for integrating the niche-based rules of land use allocation into a dynamic land use model that can address both allocation and quantity of agricultural crops

    Climate shocks and migration: an agent-based modeling approach

    Get PDF
    This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, ‘normal’ scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response

    Interrogating the Function of Metazoan Histones using Engineered Gene Clusters

    Get PDF
    Histones and their post-translational modifications influence the regulation of many DNA-dependent processes. Although an essential role for histone-modifying enzymes in these processes is well established, defining the specific contribution of individual histone residues remains a challenge because many histone-modifying enzymes have non-histone targets. This challenge is exacerbated by the paucity of suitable approaches to genetically engineer histone genes in metazoans. Here, we describe a facile platform in Drosophila for generating and analyzing any desired histone genotype, and we use it to test the in vivo function of three histone residues. We demonstrate that H4K20 is neither essential for DNA replication nor for completion of development, unlike conclusions drawn from analyses of H4K20 methyltransferases. We also show that H3K36 is required for viability and H3K27 is essential for maintenance of cellular identity during development. These findings highlight the power of engineering histones to interrogate genome structure and function in animals

    Changing crops in response to climate: Virtual Nang Rong, Thailand in an agent based simulation

    Get PDF
    The effects of extended climatic variability on agricultural land use were explored for the type of system found in villages of northeastern Thailand. An agent based model developed for the Nang Rong district was used to simulate land allotted to jasmine rice, heavy rice, cassava, and sugar cane. The land use choices in the model depended on likely economic outcomes, but included elements of bounded rationality in dependence on household demography. The socioeconomic dynamics are endogenous in the system, and climate changes were added as exogenous drivers. Villages changed their agricultural effort in many different ways. Most villages reduced the amount of land under cultivation, primarily with reduction in jasmine rice, but others did not. The variation in responses to climate change indicates potential sensitivity to initial conditions and path dependence for this type of system. The differences between our virtual villages and the real villages of the region indicate effects of bounded rationality and limits on model applications

    Design of an agent-based model to examine population–environment interactions in Nang Rong District, Thailand

    Get PDF
    The design of an Agent-Based Model (ABM) is described that integrates Social and Land Use Modules to examine population-environment interactions in a former agricultural frontier in Northeastern Thailand. The ABM is used to assess household income and wealth derived from agricultural production of lowland, rain-fed paddy rice and upland field crops in Nang Rong District as well as remittances returned to the household from family migrants who are engaged in off-farm employment in urban destinations. The ABM is supported by a longitudinal social survey of nearly 10,000 households, a deep satellite image time-series of land use change trajectories, multi-thematic social and ecological data organized within a GIS, and a suite of software modules that integrate data derived from an agricultural cropping system model (DSSAT – Decision Support for Agrotechnology Transfer) and a land suitability model (MAXENT – Maximum Entropy), in addition to multi-dimensional demographic survey data of individuals and households

    Recent Engagements with Adam Smith and the Scottish Enlightenment

    Full text link
    • …
    corecore