1,278 research outputs found

    Efficient optical quantum state engineering

    Full text link
    We discuss a novel method of efficiently producing multi-photon states using repeated spontaneous parametric downconversion. Specifically, by attempting downconversion several times, we can pseudo-deterministically add photons to a mode, producing various several-photon states. We discuss both expected performance and experimental limitations.Comment: 4 pages, 4 figure

    Optimized Synthesis and Structural Characterization of the Borosilicate MCM-70

    Get PDF
    A structure analysis of the borosilicate zeolite MCM-70, whose synthesis had been patented in 2003, was reported in 2005. Unfortunately, that structure analysis was somewhat ambiguous. Anisotropic line broadening made it difficult to model the peak shape, some peaks in the electron density map could not be interpreted satisfactorily, the framework geometry was distorted, and MAS NMR results were partially contradictory. In an attempt to resolve some of these points, an optimization of the synthesis was undertaken, and the structure was reinvestigated. The structure was solved from synchrotron powder diffraction data collected on an as-synthesized sample (Pmn2_1, a = 13.3167(1) Ă…, b = 4.6604(1) Ă…, c = 8.7000(1) Ă…) using a powder charge-flipping algorithm. The framework topology, with a 1-dimensional, 10-ring channel system, is identical to the one previously reported. However, the B in this new sample was found to be ordered in the framework, fully occupying one of the four tetrahedral sites. Two extra-framework K^+ ion positions, each coordinated to five framework O atoms and one water molecule, were also found. The solid state ^(29)Si, ^(11)B and ^1H NMR results are fully consistent with this ordered structure

    Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts(IUPAC Recommendations 2001)

    Get PDF
    A system of terms applicable to ordered microporous and mesoporous materials is proposed, and rules for writing a standardized crystal chemical formula for such materials are presented. The recommendations are based both on common usage and on a systematic classification scheme. The nomenclature has been developed to encompass all inorganic materials with ordered, accessible pores with free diameters of less than 50 nm. The crystal chemical formula describes the chemical composition of both the guest species and the host, the structure of the host, the structure of the pore system, and the symmetry of the material. This formula can be simplified or expanded to suit the user's requirement

    The cosmic ray spectrum above 10(17) eV

    Get PDF
    The final analysis of the data obtained by the Sydney University Giant Airshower Recorder (SUGAR) is presented. The data has been reanalysed to take into account the effects of afterpulsing in the photomultiplier tubes. Event data was used to produce a spectrum of equivalent vertical muon number and from this a model dependent primary energy spectrum was obtained. These spectra show good evidence for the Ankle: a flattening at 10(19) eV. There is no sign of the cut-off which would be expected from the effects of the universal black body radiation

    Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel

    Get PDF
    The crystal structure of the open conformation of a bacterial voltage-gated sodium channel pore from Magnetococcus sp. (NaVMs) has provided the basis for a molecular dynamics study defining the channel’s full ion translocation pathway and conductance process, selectivity, electrophysiological characteristics, and ion-binding sites. Microsecond molecular dynamics simulations permitted a complete time-course characterization of the protein in a membrane system, capturing the plethora of conductance events and revealing a complex mixture of single and multi-ion phenomena with decoupled rapid bidirectional water transport. The simulations suggest specific localization sites for the sodium ions, which correspond with experimentally determined electron density found in the selectivity filter of the crystal structure. These studies have also allowed us to identify the ion conductance mechanism and its relation to water movement for the NavMs channel pore and to make realistic predictions of its conductance properties. The calculated single-channel conductance and selectivity ratio correspond closely with the electrophysiology measurements of the NavMs channel expressed in HEK 293 cells. The ion translocation process seen in this voltage-gated sodium channel is clearly different from that exhibited by members of the closely related family of voltage-gated potassium channels and also differs considerably from existing proposals for the conductance process in sodium channels. These studies simulate sodium channel conductance based on an experimentally determined structure of a sodium channel pore that has a completely open transmembrane pathway and activation gate

    Detection-Loophole-Free Test of Quantum Nonlocality, and Applications

    Full text link
    We present a source of entangled photons that violates a Bell inequality free of the "fair-sampling" assumption, by over 7 standard deviations. This violation is the first experiment with photons to close the detection loophole, and we demonstrate enough "efficiency" overhead to eventually perform a fully loophole-free test of local realism. The entanglement quality is verified by maximally violating additional Bell tests, testing the upper limit of quantum correlations. Finally, we use the source to generate secure private quantum random numbers at rates over 4 orders of magnitude beyond previous experiments.Comment: Main text: 5 pages, 2 figures, 1 table. Supplementary Information: 7 pages, 2 figure

    Synthesis and structural characterization of Zn-containing DAF-1

    Get PDF
    A study exploring the use of ionic liquid reactions based on imidazolium halides in molecular sieve synthesis has produced a novel zincoaluminophosphate material with an open DFO-type framework structure. This framework structure had only been observed previously in the magnesioaluminophosphate system (Mg-DAF-1) where decamethonium was used as the structure directing agent. The new Zn-DAF-1 material has been characterized using chemical and thermogravimetric analysis and ^(13)C, ^(19)F, ^(27)Al and ^(31)P MAS NMR techniques. Structure analysis (P6/mcc, a = 22.2244(1) Å, c = 42.3293(3) Å) using synchrotron powder diffraction data not only confirmed the framework structure, but also revealed the locations of the Al, P and Zn atoms in the framework, the N,N′-di-isopropyl-imidazolium (DIPI) ions in the pores, some fluoride ions associated with double 4-rings, and some water molecules and anions filling the remaining space. This level of structural detail had not been possible in the Mg-DAF-1 material. Four different locations for the DIPI cation were found in the two 12-ring channels and Zn was found to substitute for only one of the six crystallographically distinct Al sites to yield the approximate crystal chemical formula |(DIPI)_(17)(OH,F)_(11)(H2O)_(23)|[Zn_6Al_(126)P_(132)O_(528)]-DFO

    Location of Ge and extra-framework species in the zeolite ITQ-24

    Get PDF
    The germanosilicate ITQ-24 (IWR framework type) was synthesized in fluoride medium using 1,3,5-tris(1,2-dimethylimidazolium) benzene as the structure directing agent (SDA). A structure analysis of the as-synthesized ITQ-24 material using synchrotron powder diffraction data and difference electron density calculations have allowed the fluoride ions and the germanium atoms to be located and the conformation of the SDA to be determined. The benzyl ring is perpendicular to the b axis with the three imidazolium moieties forming a “T-shaped” arrangement. Ge atoms replace some of the Si in the double-4-ring (d4r) and in one of the single-4-rings (s4r). The other s4r contains only Si. Fluoride ions are in the d4r units. Initially, the space group Cmmm (highest possible symmetry) was assumed, but the framework geometry was strained. An independent evaluation of the symmetry using the powder charge flipping algorithm in Superflip led to a successful refinement with reasonable geometry and a refined composition of |[(C_6H_3)(C_7H_(10)N_2)_3]_2F_2|[Si_(40.2)Ge_(15.8)O_(112)] in the space group Pban

    Structure determination of the zeolite IM-5 using electron crystallography

    Get PDF
    The structure of the complex zeolite IM-5 (Cmcm, a = 14.33(4) Ă…, b = 56.9(2) Ă…, c = 20.32(7) Ă…) was determined by combining selected area electron diffraction (SAED), 3D reconstruction of high resolution transmission electron microscopy (HRTEM) images from different zone axes and distance least squares (DLS) refinement. The unit cell parameters were determined from SAED. The space group was determined from extinctions in the SAED patterns and projection symmetries of HRTEM images. Using the structure factor amplitudes and phases of 144 independent reflections obtained from HRTEM images along the [100], [010] and [001] directions, a 3D electrostatic potential map was calculated by inverse Fourier transformation. From this 3D potential map, all 24 unique Si positions could be determined. Oxygen atoms were added between each Si-Si pair and further refined together with the Si positions by distance-least-squares. The final structure model deviates on average 0.16 Ă… for Si and 0.31 Ă… for O from the structure refined using X-ray powder diffraction data. This method is general and offers a new possibility for determining the structures of zeolites and other materials with complex structure

    Efficient generation of single and entangled photons on a silicon photonic integrated chip

    Full text link
    We present a protocol for generating on-demand, indistinguishable single photons on a silicon photonic integrated chip. The source is a time-multiplexed spontaneous parametric down-conversion element that allows optimization of single-photon versus multiphoton emission while realizing high output rate and indistinguishability. We minimize both the scaling of active elements and the scaling of active element loss with multiplexing. We then discuss detection strategies and data processing to further optimize the procedure. We simulate an improvement in single-photon-generation efficiency over previous time-multiplexing protocols, assuming existing fabrication capabilities. We then apply this system to generate heralded Bell states. The generation efficiency of both nonclassical states could be increased substantially with improved fabrication procedures.Comment: 7 pages, 4 figure
    • …
    corecore