61 research outputs found

    Electron crystallography as a complement to X-ray powder diffraction techniques

    Get PDF
    Electron microscopy techniques yield information for crystal structure analysis that is remarkably complementary to that obtained from X-ray powder diffraction data. Structures of polycrystalline materials that resist solution by either method alone can sometimes be solved by combining the two. For example, the intensities extracted from an X-ray powder diffraction pattern are kinematical and can be interpreted easily, while those obtained from a typical selected area electron diffraction (SAED) or precession electron diffraction (PED) pattern are at least partially dynamical and therefore more difficult to use directly. On the other hand, many reflections in a powder diffraction pattern overlap and only the sum of their intensities can be measured, while those in an electron diffraction pattern are from a single crystal and therefore well separated in space. Although the intensities obtained from either SAED or PED data are less reliable than those obtained with X-rays, they can be used to advantage to improve the initial partitioning of the intensities of overlapping reflections. However, it is the partial crystallographic phase information that can be extracted either from high-resolution transmission electron microscopy (HRTEM) images or from PED data that has proven to be particularly useful in combination with high-resolution X-ray powder diffraction data. The dual-space (reciprocal and real space) structure determination programs Focus and Superflip have been shown to be especially useful for combining the two different types of dat

    Optimized Synthesis and Structural Characterization of the Borosilicate MCM-70

    Get PDF
    A structure analysis of the borosilicate zeolite MCM-70, whose synthesis had been patented in 2003, was reported in 2005. Unfortunately, that structure analysis was somewhat ambiguous. Anisotropic line broadening made it difficult to model the peak shape, some peaks in the electron density map could not be interpreted satisfactorily, the framework geometry was distorted, and MAS NMR results were partially contradictory. In an attempt to resolve some of these points, an optimization of the synthesis was undertaken, and the structure was reinvestigated. The structure was solved from synchrotron powder diffraction data collected on an as-synthesized sample (Pmn2_1, a = 13.3167(1) Ă…, b = 4.6604(1) Ă…, c = 8.7000(1) Ă…) using a powder charge-flipping algorithm. The framework topology, with a 1-dimensional, 10-ring channel system, is identical to the one previously reported. However, the B in this new sample was found to be ordered in the framework, fully occupying one of the four tetrahedral sites. Two extra-framework K^+ ion positions, each coordinated to five framework O atoms and one water molecule, were also found. The solid state ^(29)Si, ^(11)B and ^1H NMR results are fully consistent with this ordered structure

    Structure determination of the zeolite IM-5 using electron crystallography

    Get PDF
    The structure of the complex zeolite IM-5 (Cmcm, a = 14.33(4) Ă…, b = 56.9(2) Ă…, c = 20.32(7) Ă…) was determined by combining selected area electron diffraction (SAED), 3D reconstruction of high resolution transmission electron microscopy (HRTEM) images from different zone axes and distance least squares (DLS) refinement. The unit cell parameters were determined from SAED. The space group was determined from extinctions in the SAED patterns and projection symmetries of HRTEM images. Using the structure factor amplitudes and phases of 144 independent reflections obtained from HRTEM images along the [100], [010] and [001] directions, a 3D electrostatic potential map was calculated by inverse Fourier transformation. From this 3D potential map, all 24 unique Si positions could be determined. Oxygen atoms were added between each Si-Si pair and further refined together with the Si positions by distance-least-squares. The final structure model deviates on average 0.16 Ă… for Si and 0.31 Ă… for O from the structure refined using X-ray powder diffraction data. This method is general and offers a new possibility for determining the structures of zeolites and other materials with complex structure

    On the relationship between unit cells and channel systems in high silica zeolites with the "butterfly” projection

    Get PDF
    Zeolites are crystalline aluminosilicate framework materials with corner sharing TO4 (T = Al, Si) tetrahedra forming well-defined pores and channels. Many zeolites are built from similar building units (i.e., isolated units, chains or layers), which are connected in different ways to form a variety of topologies. We have identified ten zeolite frameworks that share the same two-dimensional "butterfly” net containing 5-, 6- and 10-rings: *MRE, FER, MEL, SZR, MFS, MFI, TUN, IMF, BOG and TON. Different orientations of the TO4 tetrahedra within the layer lead to different connectivities between neighboring layers. Some layers are corrugated and some are flat, resulting in different channel systems parallel to the layer. We found some interesting relationships between the unit cell parameters and this channel system that allow the size of the channels and their directions to be deduced from the unit cell dimensions. This may facilitate the prediction of new members of this zeolite family. In addition, other zeolites containing the "butterfly” layers are also discussed

    Synthesis and structural characterization of Zn-containing DAF-1

    Get PDF
    A study exploring the use of ionic liquid reactions based on imidazolium halides in molecular sieve synthesis has produced a novel zincoaluminophosphate material with an open DFO-type framework structure. This framework structure had only been observed previously in the magnesioaluminophosphate system (Mg-DAF-1) where decamethonium was used as the structure directing agent. The new Zn-DAF-1 material has been characterized using chemical and thermogravimetric analysis and ^(13)C, ^(19)F, ^(27)Al and ^(31)P MAS NMR techniques. Structure analysis (P6/mcc, a = 22.2244(1) Å, c = 42.3293(3) Å) using synchrotron powder diffraction data not only confirmed the framework structure, but also revealed the locations of the Al, P and Zn atoms in the framework, the N,N′-di-isopropyl-imidazolium (DIPI) ions in the pores, some fluoride ions associated with double 4-rings, and some water molecules and anions filling the remaining space. This level of structural detail had not been possible in the Mg-DAF-1 material. Four different locations for the DIPI cation were found in the two 12-ring channels and Zn was found to substitute for only one of the six crystallographically distinct Al sites to yield the approximate crystal chemical formula |(DIPI)_(17)(OH,F)_(11)(H2O)_(23)|[Zn_6Al_(126)P_(132)O_(528)]-DFO

    Synthesis and structure of Mu-33, a new layered aluminophosphate

    Get PDF
    Mu-33, a new layered aluminophosphate with an Al/P ratio of 0.66, was obtained from a quasi non-aqueous synthesis in which tert-butylformamide (tBF) was the main solvent and only limited amounts of water were present. During the synthesis, tBF decomposed and the resulting protonated tert-butylamine is occluded in the as-synthesized material. The approximate structure was determined from data collected on a microcrystal (200 × 25 × 5 μm3) at the European Synchrotron Radiation Facility (ESRF) in Grenoble, but the quality of these data did not allow satisfactory refinement. Therefore the structure was refined using high-resolution powder diffraction data, also collected at the ESRF. The structure (P21/c, a = 9.8922(6) Å, b = 26.180(2) Å, c = 16.729(1) Å and β = 90.4(1)°) consists of anionic aluminophosphate layers that can be described as a six-ring honeycomb of alternating corner-sharing AlO4 and PO4 tetrahedra with additional P-atoms above and below the honeycomb layer bridging between Al-atoms. The tert-butylammonium ions and water molecules located in the interlayer spacing interact via hydrogen-bonds with the terminal oxygens of the P-atoms. The characterization of this new aluminophosphate by 13C, 31P, 1H–31P heteronuclear correlation (HETCOR) and 27Al 3QMAS solid state NMR spectroscopy is also reported
    • …
    corecore