5,424 research outputs found
Two decades of pulsar timing of Vela
Pulsar timing at the Mt Pleasant observatory has focused on Vela, which can
be tracked for 18 hours of the day. These nearly continuous timing records
extend over 24 years allowing a greater insight into details of timing noise,
micro glitches and other more exotic effects. In particular we report the
glitch parameters of the 2004 event, along with the reconfirmation that the
spin up for the Vela pulsar occurs instantaneously to the accuracy of the data.
This places a lower limit of about 30 seconds for the acceleration of the
pulsar to the new rotational frequency. We also confirm of the low braking
index for Vela, and the continued fall in the DM for this pulsar.Comment: Isolated Neutron Stars conference, London, April 24-28 200
In Search of Professional Dispositions that Yield Cultural Relevance in Primary Grade Pedagogy: A Cautionary Tale of One Kindergarten Teacher
Primary grade teachers are challenged to establish firm learning foundations for all children, yet for many teachers cultural diversity makes this a complex pedagogical challenge. It is widely assumed that the success with which teachers meet this challenge is reflected in their dispositions toward diversity, and ultimately toward culturally relevant pedagogy as a professional orientation. This article describes a multi-year study of cultural relevance in early mathematics teaching. Using the case of one kindergarten teacher who exhibited positive dispositions toward cultural relevance, the authors examine factors that seemed to work against its adoption in her pedagogy
A Quiet Revolution in Diplomacy: Quebec–UK Relations Since 1960
Quebec’s modern international outlook and its current paradiplomacy can be dated largely from the Quiet Revolution of the 1960s. Since then, the provincial government in Quebec City and the federal government in Ottawa have had to tread a fine line in accommodating each other’s constitutional rights in the field of international relations—a line that has occasionally been breached, especially in the years following the Quiet Revolution and in critical periods such as those prior to the 1980 and 1995 referenda. Foreign governments have also had to engage in careful diplomacy in order to avoid upsetting either Ottawa or Quebec City—and this has been especially true in the case of the countries historically most involved with Canada and Quebec—France, the United States, and Britain. But whereas there has been some academic writing on Quebec’s relationships with France and the United States, very little attention has been devoted to Quebec–UK relations since the Quiet Revolution. This article seeks to fill that gap and argues that the Quebec–UK relationship since the 1960s can itself best be characterized as a “quiet revolution” in diplomacy that has largely avoided the controversies that have sometimes dogged Quebec’s relations with France and the United States
Magnetism, coherent many-particle dynamics, and relaxation with ultracold bosons in optical superlattices
We study how well magnetic models can be implemented with ultracold bosonic
atoms of two different hyperfine states in an optical superlattice. The system
is captured by a two-species Bose-Hubbard model, but realizes in a certain
parameter regime actually the physics of a spin-1/2 Heisenberg magnet,
describing the second order hopping processes. Tuning of the superlattice
allows for controlling the effect of fast first order processes versus the
slower second order ones.
Using the density-matrix renormalization-group method, we provide the
evolution of typical experimentally available observables. The validity of the
description via the Heisenberg model, depending on the parameters of the
Hubbard model, is studied numerically and analytically. The analysis is also
motivated by recent experiments [S. Foelling et al., Nature 448, 1029 (2007);
S. Trotzky et al., Sience 319, 295 (2008)] where coherent two-particle dynamics
with ultracold bosonic atoms in isolated double wells were realized. We provide
theoretical background for the next step, the observation of coherent
many-particle dynamics after coupling the double wells. Contrary to the case of
isolated double wells, relaxation of local observables can be observed. The
tunability between the Bose-Hubbard model and the Heisenberg model in this
setup could be used to study experimentally the differences in equilibration
processes for nonintegrable and Bethe ansatz integrable models. We show that
the relaxation in the Heisenberg model is connected to a phase averaging
effect, which is in contrast to the typical scattering driven thermalization in
nonintegrable models. We discuss the preparation of magnetic groundstates by
adiabatic tuning of the superlattice parameters.Comment: 20 pages, 24 figures; minor changes, published versio
Recommended from our members
Stochastic Hosting Capacity in LV Distribution Networks
Hosting capacity is defined as the level of penetration that a particular technology can connect to a distribution network without causing power quality problems. In this work, we study the impact of solar photovoltaics (PV) on voltage rise. In most cases, the locations and sizes of the PV are not known in advance, so hosting capacity must be considered as a random variable. Most hosting capacity methods study the problem considering a large number of scenarios, many of which provide little additional information. We overcome this problem by studying only cases where voltage constraints are active, with results illustrating a reduction in the number of scenarios required by an order of magnitude. A linear power flow model is utilised for this task, showing excellent performance. The hosting capacity is finally studied as a function of the number of generators connected, demonstrating that assumptions about the penetration level will have a large impact on the conclusions drawn for a given network
Detection of trend changes in time series using Bayesian inference
Change points in time series are perceived as isolated singularities where
two regular trends of a given signal do not match. The detection of such
transitions is of fundamental interest for the understanding of the system's
internal dynamics. In practice observational noise makes it difficult to detect
such change points in time series. In this work we elaborate a Bayesian method
to estimate the location of the singularities and to produce some confidence
intervals. We validate the ability and sensitivity of our inference method by
estimating change points of synthetic data sets. As an application we use our
algorithm to analyze the annual flow volume of the Nile River at Aswan from
1871 to 1970, where we confirm a well-established significant transition point
within the time series.Comment: 9 pages, 12 figures, submitte
Particle number conservation in quantum many-body simulations with matrix product operators
Incorporating conservation laws explicitly into matrix product states (MPS)
has proven to make numerical simulations of quantum many-body systems much less
resources consuming. We will discuss here, to what extent this concept can be
used in simulation where the dynamically evolving entities are matrix product
operators (MPO). Quite counter-intuitively the expectation of gaining in speed
by sacrificing information about all but a single symmetry sector is not in all
cases fulfilled. It turns out that in this case often the entanglement imposed
by the global constraint of fixed particle number is the limiting factor.Comment: minor changes, 18 pages, 5 figure
Single-Shot Electron Diffraction using a Cold Atom Electron Source
Cold atom electron sources are a promising alternative to traditional
photocathode sources for use in ultrafast electron diffraction due to greatly
reduced electron temperature at creation, and the potential for a corresponding
increase in brightness. Here we demonstrate single-shot, nanosecond electron
diffraction from monocrystalline gold using cold electron bunches generated in
a cold atom electron source. The diffraction patterns have sufficient signal to
allow registration of multiple single-shot images, generating an averaged image
with significantly higher signal-to-noise ratio than obtained with unregistered
averaging. Reflection high-energy electron diffraction (RHEED) was also
demonstrated, showing that cold atom electron sources may be useful in
resolving nanosecond dynamics of nanometre scale near-surface structures.Comment: This is an author-created, un-copyedited version of an article
published in Journal of Physics B: Atomic, Molecular and Optical Physics. IOP
Publishing Ltd is not responsible for any errors or omissions in this version
of the manuscript or any version derived from it. The Version of Record is
available online at http://dx.doi.org/10.1088/0953-4075/48/21/21400
Expansion velocity of a one-dimensional, two-component Fermi gas during the sudden expansion in the ballistic regime
We show that in the sudden expansion of a spin-balanced two-component Fermi
gas into an empty optical lattice induced by releasing particles from a trap,
over a wide parameter regime, the radius of the particle cloud grows
linearly in time. This allow us to define the expansion velocity from
. The goal of this work is to clarify the dependence of the
expansion velocity on the initial conditions which we establish from
time-dependent density matrix renormalization group simulations, both for a box
trap and a harmonic trap. As a prominent result, the presence of a
Mott-insulating region leaves clear fingerprints in the expansion velocity. Our
predictions can be verified in experiments with ultra-cold atoms.Comment: 8 pages 10 figures, version as published with minor stylistic change
Longitudinal LASSO: Jointly Learning Features and Temporal Contingency for Outcome Prediction
Longitudinal analysis is important in many disciplines, such as the study of
behavioral transitions in social science. Only very recently, feature selection
has drawn adequate attention in the context of longitudinal modeling. Standard
techniques, such as generalized estimating equations, have been modified to
select features by imposing sparsity-inducing regularizers. However, they do
not explicitly model how a dependent variable relies on features measured at
proximal time points. Recent graphical Granger modeling can select features in
lagged time points but ignores the temporal correlations within an individual's
repeated measurements. We propose an approach to automatically and
simultaneously determine both the relevant features and the relevant temporal
points that impact the current outcome of the dependent variable. Meanwhile,
the proposed model takes into account the non-{\em i.i.d} nature of the data by
estimating the within-individual correlations. This approach decomposes model
parameters into a summation of two components and imposes separate block-wise
LASSO penalties to each component when building a linear model in terms of the
past measurements of features. One component is used to select features
whereas the other is used to select temporal contingent points. An accelerated
gradient descent algorithm is developed to efficiently solve the related
optimization problem with detailed convergence analysis and asymptotic
analysis. Computational results on both synthetic and real world problems
demonstrate the superior performance of the proposed approach over existing
techniques.Comment: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 201
- …
