74 research outputs found

    Niches, rather than neutrality, structure a grassland pioneer guild

    Get PDF
    Pioneer species are fast-growing, short-lived gap exploiters. They are prime candidates for neutral dynamics because they contain ecologically similar species whose low adult density is likely to cause widespread recruitment limitation, which slows competitive dynamics. However, many pioneer guilds appear to be differentiated according to seed size. In this paper, we compare predictions from a neutral model of community structure with three niche-based models in which trade-offs involving seed size form the basis of niche differentiation. We test these predictions using sowing experiments with a guild of seven pioneer species from chalk grassland. We find strong evidence for niche structure based on seed size: specifically large-seeded species produce fewer seeds but have a greater chance of establishing on a per-seed basis. Their advantage in establishment arises because there are more microsites suitable for their germination and early establishment and not directly through competition with other seedlings. In fact, seedling densities of all species were equally suppressed by the addition of competitors' seeds. By the adult stage, despite using very high sowing densities, there were no detectable effects of interspecific competition on any species. The lack of interspecific effects indicates that niche differentiation, rather than neutrality, prevails

    Night optimised care technology for users needing assisted lifestyles

    Get PDF
    There is growing interest in the development of ambient assisted living services to increase the quality of life of the increasing proportion of the older population. We report on the Night Optimised Care Technology for UseRs Needing Assisted Lifestyles project, which provides specialised night time support to people at early stages of dementia. This article explains the technical infrastructure, the intelligent software behind the decision-making driving the system, the software development process followed, the interfaces used to interact with the user, and the findings and lessons of our user-centred approach

    Cell shape analysis of random tessellations based on Minkowski tensors

    Full text link
    To which degree are shape indices of individual cells of a tessellation characteristic for the stochastic process that generates them? Within the context of stochastic geometry and the physics of disordered materials, this corresponds to the question of relationships between different stochastic models. In the context of image analysis of synthetic and biological materials, this question is central to the problem of inferring information about formation processes from spatial measurements of resulting random structures. We address this question by a theory-based simulation study of shape indices derived from Minkowski tensors for a variety of tessellation models. We focus on the relationship between two indices: an isoperimetric ratio of the empirical averages of cell volume and area and the cell elongation quantified by eigenvalue ratios of interfacial Minkowski tensors. Simulation data for these quantities, as well as for distributions thereof and for correlations of cell shape and volume, are presented for Voronoi mosaics of the Poisson point process, determinantal and permanental point processes, and Gibbs hard-core and random sequential absorption processes as well as for Laguerre tessellations of polydisperse spheres and STIT- and Poisson hyperplane tessellations. These data are complemented by mechanically stable crystalline sphere and disordered ellipsoid packings and area-minimising foam models. We find that shape indices of individual cells are not sufficient to unambiguously identify the generating process even amongst this limited set of processes. However, we identify significant differences of the shape indices between many of these tessellation models. Given a realization of a tessellation, these shape indices can narrow the choice of possible generating processes, providing a powerful tool which can be further strengthened by density-resolved volume-shape correlations.Comment: Chapter of the forthcoming book "Tensor Valuations and their Applications in Stochastic Geometry and Imaging" in Lecture Notes in Mathematics edited by Markus Kiderlen and Eva B. Vedel Jense

    Improved regression calibration

    Get PDF
    The likelihood for generalized linear models with covariate measurement error cannot in general be expressed in closed form which makes maximum likelihood estimation taxing. A popular alternative is regression calibration which is computationally efficient at the cost of inconsistent estimation. We propose an improved regression calibration approach, a general pseudo maximum likelihood estimation method based on a conveniently decomposed form of the likelihood. It is both consistent and computationally efficient, and produces point estimates and estimated standard errors which are practically identical to those obtained by maximum likelihood. Simulations suggest that improved regression calibration which is easy to implement in standard software, works well in a range of situations
    corecore