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IMPROVED REGRESSION CALIBRATIONAbstra
tThe likelihood for generalized linear models with 
ovariate measurementerror 
annot in general be expressed in 
losed form whi
h makes maximumlikelihood estimation taxing. A popular alternative is regression 
alibrationwhi
h is 
omputationally eÆ
ient at the 
ost of in
onsistent estimation. Wepropose an improved regression 
alibration approa
h, a general pseudomaximum likelihood estimation method based on a 
onveniently de
omposedform of the likelihood. It is both 
onsistent and 
omputationally eÆ
ient, andprodu
es point estimates and estimated standard errors whi
h are pra
ti
allyidenti
al to those obtained by maximum likelihood. Simulations suggest thatimproved regression 
alibration, whi
h is easy to implement in standardsoftware, works well in a range of situations.Key words: 
ovariate measurement error, measurement model, generalizedlinear model, pseudo maximum likelihood estimation, regression 
alibration
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Psy
hometrika Submission February 3, 2012 3Introdu
tionGeneralized linear models (e.g., M
Cullagh and Nelder, 1989) are the workhorses inmany appli
ations of statisti
al methods. A ta
it assumption in these models is that all
ovariates are perfe
tly measured without error. Violation of this assumption willprodu
e in
onsistent estimators unless the measurement error problem is addressed. Abody of resear
h has hen
e evolved to allow at least approximate inferen
e ingeneralized linear models with 
ovariate measurement error (see Carroll et al, 2006 andBuona

orsi, 2010 for 
omprehensive overviews; we will dis
uss some of this literature inmore detail later).In this arti
le we 
onsider stru
tural 
ovariate measurement error models, where aparametri
 distribution is spe
i�ed for the erroneously measured 
ovariates. An obviousapproa
h to estimation is then maximum likelihood whi
h produ
es 
onsistent estimatesif the model is 
orre
tly spe
i�ed (e.g., S
hafer, 1987; S
hafer and Purdy, 1996; Higdonand S
hafer, 2001). Unfortunately, the joint likelihood of the response and the measures
annot in general be expressed in 
losed form and 
omputationally intensive methodsbased on numeri
al integration or simulation must be used. The 
omputational burdeninvolved in a full likelihood analysis is therefore often 
onsiderable.Regression 
alibration has been proposed as a 
omputationally eÆ
ient approa
h toestimating generalized linear models with 
ovariate measurement error (e.g., Armstrong,1985; Rosner et al, 1989, 1990; Carroll and Stefanski, 1990). It is based on anapproximation of the likelihood fun
tion where the basi
 idea is to plug in \best"predi
tions for the 
ovariates measured with error and pro
eed in estimating the
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hometrika Submission February 3, 2012 4generalized linear model as if the predi
tions were 
ovariates measured without error.Unfortunately, estimates of the regression parameters from regression 
alibration are ingeneral in
onsistent. The in
onsisten
y is typi
ally small when the true e�e
ts of the
ovariates measured with error are moderate and/or the measurement error varian
esare small, but more pronoun
ed when these 
onditions do not hold.In this arti
le we propose a pseudo maximum likelihood approa
h, 
alled improvedregression 
alibration (IRC), whi
h simultaneously addresses the 
omputational
hallenge in likelihood analysis and the in
onsisten
y problem in 
onventional regression
alibration. The basi
 idea is to 
onsider a de
omposed form of the likelihood where one
omponent is expressed in 
losed form and trivial to maximize, and the se
ond
omponent is a

urately maximized using 
rude and fast numeri
al integration. In
ontrast to 
onventional regression 
alibration, where predi
ted 
ovariates measuredwith error are treated as �xed in point estimation, the random nature of the predi
tionsis handled by using predi
tive densities of the 
ovariates measured with error as mixingdistributions.Generalized linear models with 
ovariate measurement errorLet yi be the out
ome variable for unit i, i = 1; : : : ; N , xi an m� 1 ve
tor of
ovariates or \exposures" measured with error by the measures wi, and zi a ve
tor ofperfe
tly measured 
ovariates, in
luding a 
onstant 1.Following Clayton (1992), we 
an view a generalized linear model with 
ovariatemeasurement error as 
omposed of three parts: 1) an out
ome model g(yijxi; zi;#O), 2)
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hometrika Submission February 3, 2012 5a measurement model g(wijxi; zi;#M) and 3) an exposure model g(xijzi;#E), whereg(�j�) are 
onditional density fun
tions and #O, #M and #E the 
orresponding parameterve
tors. We de�ne the 
omplete parameter ve
tor as # = (#0O;#0M;#0E)0. Throughout, wemake the standard assumption of \nondi�erential measurement error" that yi and wiare independent 
onditional on (xi; zi).Out
ome model g(yijxi; zi;#O)The out
ome model is a generalized linear model (e.g., M
Cullagh and Nelder,1989) with three parts: 1) a linear predi
tor, whi
h in the present 
ontext takes theform �i � z0i�z + x0i�x, 2) a link fun
tion g(�) that links the linear predi
tor to the
onditional expe
tation of the response, given the 
ovariates, E(yijxi; zi) = g�1(�i), and3) a 
onditional distribution for the response, given the 
ovariates, taken from theexponential family, g(yijxi; zi;#O) = exp�yi�i � b(�i)� + 
(yi; �)� :Here, �i = �i(xi; zi;#O) is the 
anoni
al or natural parameter, � = �(#O) is the s
ale ordispersion parameter and b(�) and 
(�) are fun
tions depending on the member of theexponential family. The most 
ommon nonlinear instan
e of this is the binary logisti
model where yi follows a Bernoulli distribution and �i = �i = logfE(yi)=[1� E(yi)℄g.For this model, � = 1 and #O = � = (�0z;�0x)0. Due to its popularity we will 
onsider alogisti
 out
ome model in our simulations and data analysis.
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Psy
hometrika Submission February 3, 2012 6Measurement model g(wijxi;#M)The form of the measurement model depends on the nature of the available data.Here we fo
us on the 
ase of repli
ation data, where at least a subsample of subje
tsprovides several measures for ea
h fallibly measured 
ovariate. The main alternative isvalidation data where both xi and wi are observed for a subsample, in whi
h 
ase theproposed estimation pro
edures 
an be modi�ed in a straightforward manner.In general, the measurements wi may depend on the 
ovariates zi measuredwithout error as well as on xi, similarly to di�erential item fun
tioning in item responsetheory. This would be straightforward to handle in our suggested approa
h but here weomit zi for simpli
ity and 
onsider measurement models of the form g(wijxi;#M).The ve
tor xi is measured by fallible measures wi = (w01i; : : : ;w0mi)0, where ea
hwli = (wli1; : : : ; wlinli)0 is a ve
tor of nli repli
ate measurements. For the moment,
onsider balan
ed data where nli = nl. A general multidimensional measurement modelfor m sets of 
ongeneri
 measures (e.g., J�oreskog, 1971) 
an be expressed aswi = � +�xi + Æi; Æi � N(0;�) (1)where 	�Cov(xi), ��Cov(Æi), and it is assumed that Cov(xi; Æi) = 0. The matrix �is partitioned as
� = 0BBBBBBBBBB�

�1 0 : : : 00 �2 : : : 0... ... . . . ...0 0 0 �m
1CCCCCCCCCCA ; (2)
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hometrika Submission February 3, 2012 7where �l is a ve
tor of s
ale parameters for the measures of 
ovariate l. Further
onstraints are often imposed on the parameters of the measurement model, e.g. toobtain tau-equivalent or parallel models.Exposure model g(xijzi;#E)The dependen
e between the exposures measured with error xi and the 
ovariatesmeasured without error zi is spe
i�ed asxi = �zi + �i; (3)where � is a regression parameter matrix, �i � N(0;	), and Cov(zi; �i) = 0. As thes
ale of xi is not identi�able from (1) and (3), some standard identi�
ation restri
tionsare imposed on the parameters. The parameter ve
tor #M then 
onsists of the uniqueelements of �, � and �, and #E of the unique elements of � and 	.A generalized linear model with 
ovariate measurement error is shown graphi
allyin Figure 1 for the simple 
ase of an exposure xi fallibly measured by two measures wi1and wi2, and a 
ovariate zi measured without error. A 
ommon identi�ability 
onstraintfor this 
ase is to assume �1 = �2 = 0 and �1 = �2 = 1, whi
h give the \
lassi
al"measurement error model wij = xi + Æij.=========================Insert Figure 1 about here=========================The method that we propose below is not dependent on this spe
i�
 
ombination
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hometrika Submission February 3, 2012 8of measurement and out
ome models, but applies also more generally. Looking ahead tothe rest of the paper, other study designs, and 
orresponding 
hanges to measurementand out
ome models, a�e
t only Stage 1 of our two-stage estimation. For example, asituation where the number of repli
ate measurements is not the same for all units i isa

ounted for by the sele
tion matrix Ci in
luded in equation (8), and the 
ase where yiis not observed for some units by omitting these from the log-likelihood 
omponent`2(#O;#ME) in (5). If a validation sample rather than repli
ation data are available,Stage 1 of the estimation 
ould be done by modelling the 
onditional moments of xigiven wi and zi (equations 11 and 12) dire
tly rather than via the exposure andmeasurement models; in this 
ase the formulas of the varian
e estimation in theAppendix would also be simpli�ed.Estimation methodsWe now 
onsider di�erent approa
hes to estimation of generalized linear modelswith 
ovariate measurement error. We start by brie
y des
ribing maximum likelihood(ML) estimation, then pro
eed by developing our suggested approa
h of improvedregression 
alibration (IRC) before 
ontrasting this with 
onventional regression
alibration (RC). We then 
on
lude this se
tion by a dis
ussion of previous literature onthese approa
hes to measurement error modelling. Throughout we 
onsider likelihoodsfor the response yi and the measures wi 
onditional on the perfe
tly measured
ovariates zi.
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Psy
hometrika Submission February 3, 2012 9Maximum likelihood (ML) estimationThe likelihood 
ontribution for a single unit i isg(yi;wijzi;#) = Z g(yijxi; zi;#O)g(wijxi;#M)g(xijzi;#E)dxi; (4)the log-likelihood 
ontribution is `i(#) = log g(yi;wijzi;#), and the log-likelihood`(#) =PNi=1 `i(#). When � is diagonal, as is often assumed,g(wijxi;#M) =Qml=1 Qnlij=1 g(wlijjxi;#M). The ML estimator b# is obtained bymaximizing `(#) with respe
t to #.Unfortunately, the joint likelihood of generalized linear models with 
ovariatemeasurement error 
annot generally be expressed in 
losed form and requiresintegration, typi
ally a

omplished by Gaussian quadrature. In general, theperforman
e of Gaussian quadrature depends on the smoothness of the integrand.A

ording to the fundamental theorem of Gaussian quadrature (e.g., Davis andRabinowitz, 1984; Thisted, 1988, Theorem 5.3-1), ordinary Gaussian quadrature is exa
tif the fun
tion in the integrand is a 2R�1 order polynomial (where R is the number ofquadrature points). However, a likelihood 
omponent in
luding a produ
t of 
onditionalresponse distributions for 
ontinuous responses, su
h as Qml=1 Qnlij=1 g(wlijjxi;#M) above,tends to produ
e a peaked integrand in the marginal likelihood (a tenden
y exa
erbatedas the number of measures and their intra
lass 
orrelation in
reases). Su
h likelihood
ontributions are poorly approximated by low-degree polynomials and ordinaryGauss-Hermite quadrature does not work well for this situation (e.g., Albert andFollmann, 2000; Lesa�re and Spiessens, 2001). This is illustrated in the left panel of
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Psy
hometrika Submission February 3, 2012 10�gure 2 where we see that all quadrature points 
ompletely miss the integrand.=========================Insert Figure 2 about here=========================Therefore, more 
omputationally demanding adaptive Gaussian quadraturemethods that align the quadrature points under the integrand are re
ommended when
ontinuous responses are involved (e.g., Rabe-Hesketh et al, 2005). A limitation of thefull likelihood approa
h is hen
e that it be
omes 
omputationally intensive.Improved regression 
alibration (IRC)As an alternative to full ML we propose to break the estimation problem into twoparts, allo
ating as many parameters as possible to a likelihood 
omponent that is easyto maximize. This is an instan
e of a general two-stage approa
h to estimation knownas pseudo maximum likelihood (PML) estimation (Gong and Samaniego, 1981).Letting #ME = (#0M;#0E)0, we �rst re-express g(wijxi;#M)g(xijzi;#E) in (4) asg(xijwi; zi;#ME)g(wijzi;#ME), and the log-likelihood as`(#) = NXi=1 log g(yijwi; zi;#O;#ME) + NXi=1 log g(wijzi;#ME) � `2(#O;#ME) + `1(#ME) (5)where g(yijwi; zi;#O;#ME) = Z g(yijxi; zi;#O) g(xijwi; zi;#ME) dxi: (6)In Stage 1 of IRC we estimate the 
ombined measurement and exposure modelg(wijzi;#ME) by maximizing just `1(#ME), to obtain estimates b#ME. These are not full
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Psy
hometrika Submission February 3, 2012 11ML estimates, be
ause they omit the typi
ally small amount of information about of#ME 
ontained in yi. In Stage 2 these estimates from Stage 1 are then treated as known,and estimates b#IRCO for the parameters of primary interest #O are obtained by maximizing`2(#O; b#ME). A detailed des
ription of the two stages is provided in the next se
tion.The basi
 idea of IRC is that maximizing the approximate de
omposed likelihoodis 
onsiderably less demanding than maximizing the joint likelihood. In Stage 1 the
omponent g(wijzi;#ME) is in 
losed form and trivial to maximize. In Stage 2 themixing distribution in the integral (6) is the predi
tive density g(xijwi; zi; b#ME) of the
ovariates measured with error, given their observed measures and 
ovariates measuredwithout error, whi
h is also trivial to obtain.The dimensionality of integration (the number of 
ovariates measured with error)in Stage 2 is the same as for full ML. At �rst glan
e there does hen
e not appear to beany 
omputational bene�ts to be reaped from using IRC. However, the integrand is nowthe single logisti
 fun
tion g(yijxi; zi;#O), whi
h due to its smoothness is wellapproximated by a low order polynomial. For instan
e, the seminal work on non-linearfa
tor analysis by M
Donald (1967) demonstrated that a 
ubi
 fun
tion suÆ
ed forapproximating the normal ogive (whi
h is very 
lose to the logisti
 fun
tion). Wetherefore expe
t that 
rude and fast ordinary Gauss-Hermite quadrature, using just afew quadrature points, would work well for IRC. This is illustrated in the right panel of�gure 2, where all three quadrature points ni
ely 
over the logisti
 integrand, in
ontrast to the 
ase for the likelihood in the left panel.It is likely that dire
t maximization of the full likelihood expressed as (5) 
ould also
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Psy
hometrika Submission February 3, 2012 12be based on more 
rude Gauss-Hermite quadrature than what is required for thestandard form (4). In this arti
le, however, we fo
us on the two-stage approa
h to (5),sin
e it is straightforward to implement in publi
ly available software.The savings 
ompared to ML are espe
ially pronoun
ed in three settings and their
ombinations: 1) large datasets, 2) when the relative number of parameters allo
ated tothe easily maximized likelihood 
omponent is large (a large number of measures and/orrealisti
ally 
omplex measurement models), and 3) when the same predi
tivedistributions 
an be used in several models, so that the Stage-1 likelihood 
omponentsneed only be maximized on
e.Conventional regression 
alibration (RC)Conventional regression 
alibration is also a two-stage method whi
h 
an be seen asan approximation of pseudo-ML (IRC) estimation. Stage 1 is the same as for IRC, butestimation in Stage 2 is based on the further approximationg(yijwi; zi;#O; b#ME) � g(yije�i; zi;#O) (7)where g(yije�i; zi;#O) is of the same form as the out
ome model g(yijxi; zi;#O), now withthe \predi
tive mean" e�i = E(xijwi; zi; b#ME) used in the pla
e of xi. RC thus 
arriesonly e�i forward from Stage 1 to Stage 2 of the estimation, whereas IRC takes the wholepredi
tive density g(xijwi; zi; b#ME) into a

ount in Stage 2. In 
ontrast to IRC, RC isgenerally in
onsistent be
ause it employs the approximation (7) of the likelihoodfun
tion (6).
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Psy
hometrika Submission February 3, 2012 13ML, PML and RC in the measurement error literatureThe books by Carroll et al. (2006) and Buona

orsi (2010) provide ex
ellentsummaries of methods of estimation in measurement error modelling. The use of fullML estimation has been advo
ated in a series of papers by Daniel S
hafer and
oauthors. S
hafer (1993), for binary probit models, and S
hafer and Purdy (1986), fornormal linear models, 
onsider 
ases where the likelihood 
an be evaluated in a 
losedform. For 
ases where this is not possible, su
h as binary logisti
 regression, S
hafer(1987) uses a 
losed-form approximation to avoid numeri
al integration, while Higdonand S
hafer (2001) employ ordinary Gauss-Hermite quadrature to evaluate thelikelihood. Rabe-Hesketh et al. (2003) propose using more a

urate adaptive quadraturein this setting. Another possibility is to estimate the models in a Bayesian framework,using simulation-based MCMC methods (e.g., Stephens and Dellaportas 1992;Ri
hardson and Gilks 1993; Kuha 1997; Gustafson 2004).Key referen
es for regression 
alibration in
lude Armstrong (1985), Rosner et al.(1989, 1990), Carroll and Stefanski (1990) and Gleser (1990), and the overview inCarroll et al. (2006). Buona

orsi (2010) points out that RC too is a \pseudo-type",two-stage method, whi
h 
an also be thought as an approximation of the PMLestimation.The possibility of PML estimation for regression models with 
ovariates measuredwith error was noted early, for example by Carroll et al. (1984), who apply it for abinary probit model, and Armstrong (1985). PML estimation has been suggested forsome spe
i�
 models where its implementation is relatively straightforward, su
h as
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ovariate (Burr 1988) and linear models (Buona

orsi et al.2000 for mixed models, and Skrondal and Laake 2001 for stru
tural equation modelswith latent variables). For other models, however, the approa
h has not been developed,perhaps be
ause of a per
eption that its implementation requires \spe
ializedprogramming" (Buona

orsi 2010; p. 227). The IRC method proposed here provides ageneral approa
h to PML for 
ovariate measurement models whi
h largely avoids su
hprogramming. The anatomy of improved regression 
alibrationWe will now have a 
loser look at ea
h of the stages of IRC.Stage 1: Estimation of the MIMIC model g(wijzi;#ME)We 
an view (1) as representing the measurement model for a possibly hypotheti
al
omplete set of repli
ate measurements wi, where the numbers of measurements in wliare nl for ea
h unit i. The numbers of a
tually observed repli
ates may in fa
t benli < nl for some i; l, due to design and/or nonresponse. The most 
ommon 
ase ofunbalan
ed data by design is one where repli
ate measurements are only 
olle
ted for asubsample, so that nli = 1 outside the subsample. De�ning ni =Pl nli and n =Pl nl,the model for su
h possibly in
omplete measurements is obtained by multiplying theright-hand side of (1) by an ni � n sele
tion matrix Ci. We will hen
eforth in
lude Ciwhere appropriate in the formulae sin
e this is required for obtaining 
orre
t results inthe unbalan
ed 
ase where the nli are not 
onstant.
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Psy
hometrika Submission February 3, 2012 15Together the measurement and exposure models 
onstitute a multiple-indi
atormultiple-
ause (MIMIC) model (e.g., Robinson, 1974; J�oreskog and Goldberger, 1975).To obtain g(wijzi;#ME), we substitute the exposure model into the measurement model,produ
ing the redu
ed form MIMIC modelwi = Ci(� +��zi +��i + Æi); (8)for whi
h the 
onditional �rst and se
ond order moments are�i � E(wijzi) = Ci(� +��zi) and (9)�i � COV(wijzi) = Ci(�	�0 +�)C0i: (10)The density for the measures, given the perfe
tly measured 
ovariates, be
omeswijzi � N(�i;�i), and the log-likelihood `1(#ME) for the 
ombined measurement andexposure model 
an be expressed in 
losed form.The estimates b#ME that maximize `1(#ME) 
an be obtained in a very
omputationally eÆ
ient manner using standard methods for moment stru
turemodelling (e.g., Bentler, 1983). The estimates are 
onsistent as N!1 for �xed niunder mild regularity 
onditions, not requiring the normality assumptions imposedabove (e.g., Shapiro, 2007). They remain 
onsistent also when measurements aremissing at random (MAR) in the sense of Rubin (1976), although MAR is slightly morerestri
tive here than for full ML sin
e yi is not a part of the Stage-1 likelihood.
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hometrika Submission February 3, 2012 16Stage 2: Estimation of the model g(yijwi; zi;#O; b#ME)Under the models (1) and (3) assumed in Stage 1, the predi
tive density of the
ovariates measured with error given their observed measures and the 
ovariatesmeasured without error be
omes xijwi; zi � N(�i;
i), with the 
onditional mean andvarian
e matrix�i � E(xijwi; zi;#ME) = �zi +	�0C0i��1i (wi � �i) and (11)
i � Cov(xijwi; zi;#ME) = 	�	�0C0i��1i Ci�	; (12)where we note the role of the sele
tion matrix Ci. Substituting estimates b#ME for theparameters in (11) and (12), we obtain empiri
al Bayes (EB) predi
tions e�i for xi forea
h unit i, and their predi
tive varian
es b
i (e.g., Skrondal and Rabe-Hesketh,2004:C.6, 2009). The EB predi
tions are identi
al to the empiri
al best linear unbiasedpredi
tions (EBLUP) whi
h do not hinge on distributional assumptions (e.g., Robinson,1991).We �nally estimate the parameters of primary interest #O. Note that, 
onditionalon (wi; zi) and given the estimates b#ME, we 
an write xi = e�i + ui where ui � N(0; b
i),independent of wi and zi. Substituting this into (6) givesg(yijwi; zi;#O; b#ME)= Z g(yijxi; zi;#O) g(xijwi; zi; b#ME) dxi = Z g�(yije�i; zi;ui;#O) g(ui; b
i) dui (13)where g�(yije�i; zi;ui;#O) is a generalized linear model of the same kind asg(yijxi; zi;#O), but with the linear predi
tor�i = z0i�z + (e�i + ui)0�x = z0i�z + e�0i�x + u0i�x; (14)
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h in
ludes the ve
tor of random e�e
ts ui. For the 
ase of a single 
ovariate ximeasured with error, the linear predi
tor 
an be expressed as �i = z0i�z + �xe�i + �xui;where ui � N(0; !̂i) and !̂i = b
i is a s
alar.Model (13) is a spe
ial 
ase of a generalized linear latent and mixed model(GLLAMM), see for instan
e Rabe-Hesketh et al (2004a) and Skrondal andRabe-Hesketh (2004, 2007). It di�ers from a 
onventional generalized linear mixedmodel (GLMM) in several regards. First, the model is for single-level data instead ofmultilevel or 
lustered data. The model is identi�ed be
ause the 
ovarian
e matrix b
iof ui is treated as known from Stage 1, and �x is 
onstrained to be equal to the
oeÆ
ients of e�i (a model simply introdu
ing level-1 random e�e
ts with a free varian
ematrix, without any parameter restri
tion, is not identi�ed). Se
ond, the mixingdistribution is the predi
tive density of the unobserved xi. Third, the random e�e
ts aremultiplied by unknown parameters. An important pra
ti
al merit of IRC is that model(13) 
an be estimated using the gllamm program (e.g., Rabe-Hesketh et al, 2004b).Properties of improved regression 
alibrationThe IRC estimator b#IRCO is the value of #O whi
h maximizes the se
ond-stagelog-likelihood `2(#O; b#ME) where b#ME is a 
onsistent estimator of #ME obtained bymaximizing `1(#ME) in the �rst stage. This is an instan
e of a general approa
h toestimation where the parameters of a model are divided into two sets, one of whi
h
ontains the parameters of interest and the other involves only nuisan
e parameters.The nuisan
e parameters are �rst estimated by some 
onsistent and 
omputationally
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onvenient estimators, and the parameters of interest are then estimated by maximizingan appropriate obje
tive fun
tion with the estimates of the nuisan
e parameters fromthe �rst step treated as known. This is known as pseudo maximum likelihood (PML)estimation when, as here, the se
ond-stage obje
tive fun
tion is a likelihood (Gong andSamaniego, 1981), and more generally as quasi generalized extremum estimation(Gourieroux and Monfort, 1995).It is well known that su
h two-stage estimators are 
onsistent and asymptoti
allynormally distributed under very general regularity 
onditions. The 
onditions and aproof of the 
onsisten
y are given by Gourieroux and Monfort (1995; S. 24.2.4 and24.2.2). In the notation of our problem, denote the true parameter value by#� = (#�0O ;#�0ME)0. Then b#IRCO is 
onsistent for #�O if, �rst, standard regularity 
onditionshold so that the ML estimator of the whole of # is itself 
onsistent for #� and, se
ond,that (i) #O and #ME 
an vary independently of ea
h other, and (ii) b#ME is 
onsistent for#�ME. All of these 
onditions are satis�ed in the 
ase 
onsidered here.Let u(#) = �`(#)=�# be the s
ore fun
tion, partitioned asu(#) = ��`(#)�#0O ; �`(#)�#0ME �0 = (u#O(#)0; u#ME(#)0)0;and de�ne the mean s
ore as �u(#) = (�u#O(#)0; �u#ME(#)0)0 = N�1 u(#). De�ne theFisher information matrixI(#�) = limN!1E#� �� ��u(#)�#0 ����#=#�� = 2664 IO;OIME;O IME;ME3775with partitions 
orresponding to #O and #ME. For the asymptoti
 normality of b#IRCO , it is
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hometrika Submission February 3, 2012 19further supposed thatN1=2 2664 �u#O(#�O;#�ME)b#ME � #�ME 3775 L�! N0BB�0; 2664 IO;OVME;O VME;ME37751CCA : (15)Then N1=2 (b#IRCO � #�O) L�! N(0;�) (16)where � = I�1O;O + I�1O;O I 0ME;OVME;ME IME;O I�1O;O: (17)The relatively simple form of (17) follows from the fa
t that for PML estimatorsVME;O = 0 in general, so terms involving VME;O disappear from the expression (Parke,1986). The asymptoti
 
ovarian
e matrix of the IRC estimator, whi
h also takes intoa

ount the un
ertainty of the stage-1 estimates, is then given as ACOV(b#IRCO ) = N�1�.In (17), N�1 I�1O;O is the asymptoti
 
ovarian
e matrix of b#IRCO if #ME were known. Anestimate of it is obtained as a by-produ
t of �tting model (13), and an estimate ofN�1VME;ME similarly from �tting (8). The remaining part of (17) is IME;O, whi
h weestimate by bIME;O = N�1 NXi=1 u#ME;i(b#IRC) u#O;i(b#IRC)0 (18)where u#O;i(b#IRC) and u#ME;i(b#IRC) are the gradients of the log-likelihood `i(#) for unit i,evaluated at the parameter estimates b#IRC = (b#IRC0O ; b#0ME)0. How to obtain the requiredgradients is demonstrated in the Appendix.In summary, the di�eren
e between ML and IRC does not 
on
ern 
onsisten
y asboth estimators are 
onsistent. Rather, the di�eren
e is the loss of eÆ
ien
y, 
ompared
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hometrika Submission February 3, 2012 20to ML, that is in
urred by IRC when it dis
ards the data on yi in estimating #ME in the�rst stage. However, we would expe
t this ineÆ
ien
y to be slight, be
ause very littleinformation about #ME is 
ontained in the yi in the sample. This is examined further inthe next se
tion. SimulationsWe use a simulation study to 
ompare the performan
e of maximum likelihood(ML), improved regression 
alibration (IRC) and 
onventional regression 
alibration(RC) estimators. This is done in two parts, 
omparing �rst ML and IRC | whi
h turnout to be virtually identi
al | and then IRC with RC.For the exposure model we simulate a 
ovariate measured with error xi asxi = 0:3zi + �i; with zi � N(0; 1), independently distributed of �i � N(0;  ), where = 1. For the measurement model we 
onsider ni = 2 measures wij of xi for ea
h i,and simulate from a parallel or 
lassi
al linear measurement model wij = xi + Æij;where Æij � N(0; �). Finally, for the out
ome model we simulate from the logisti
regression model logitfPr(yi = 1jxi; zi)g = �0 + �zzi + �xxi:Three values of the 
oeÆ
ient �x of the fallibly measured 
ovariate are 
onsidered:a moderate magnitude �x = 0:5, a high magnitude �x = 1, and a very high magnitude�x = 1:5, whi
h 
orrespond respe
tively to odds ratios of 1.65, 2.72 and 4.48 for onestandard deviation 
hange in x. The very high magnitude 
ase is in
luded in the spiritof Buzas and Stefanski (1995: 546) to provide a tough test. For the measurement errorvarian
e �, we use values � = 1 and � = 0:33. These give two di�erent values for the
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hometrika Submission February 3, 2012 21reliabilities � =  =( + �), a moderate reliability 
ase where � = 0:5 and a highreliability 
ase where � = 0:75. The parameters �z and �0 are �xed at 0.5 and -2,respe
tively, throughout all simulations. We 
onsider the sample sizes N = 200,N = 1000 and N = 5000. For ea
h setting, 1000 repli
ations of datasets are simulated.ML estimation was 
arried out using numeri
al integration with 8 point adaptivequadrature. For IRC we used 3 point ordinary Gaussian quadrature, motivated by theearlier dis
ussion of 
rude and fast quadrature approximation in this setting. Therewere, however, a handful of 
ases where the latter was not a

urate enough, indi
atedby 
learly divergent estimates from ML and IRC. To re
tify this, we re-estimated themodels using adaptive quadrature whenever the IRC estimate of �x or �z was largerthan 3 in absolute value, whi
h was required only for four data sets in one simulationsetting. This de
ision rule is straightforward to apply also in the analysis of real data,sin
e the ML estimates need not be known.=========================Insert Table 1 about here==================================================Insert Table 2 about here=========================We �rst 
ompare ML and IRC estimators, and also assess the performan
e ofestimators of the varian
e (17) of the IRC estimator. These results are reported in
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hometrika Submission February 3, 2012 22Tables 1 and 2. It is 
lear that the estimates of the regression 
oeÆ
ients from IRC arealmost identi
al to those from ML, regardless of the sample size and the parametervalues. This is the 
ase not only on average, but also for nearly every individual dataset. As a result, the simulation standard deviations of the estimators are also verysimilar. There thus appears to be virtually no loss of eÆ
ien
y from the two-stagemethod of estimation employed by IRC.On the other hand, 
omputing times for the two approa
hes 
an be very di�erent.On a desktop PC with a 2.4GHz Intel Core 2 pro
essor and 2GB RAM, estimation forone dataset of sample sizes 200, 1000 and 5000, respe
tively, took around 15, 45 and 360se
onds for ML, and around 1, 3 and 15 se
onds for IRC. It thus appears that therelative advantage in 
omputing time of IRC over ML in
reases as the sample sizesin
rease. The same is true when the number of repli
ate measurements wij is in
reased.In tests with ni = 3 repli
ates (not shown here), the 
omputing times for IRC wereessentially un
hanged, while the times for ML in
reased to about 17, 55 and 520se
onds for N = 200, 1000 and 5000, respe
tively.The estimated standard errors of the IRC estimates, taking into a

ountun
ertainty from both stages of the estimation, are obtained by estimating (17) asshown in the Appendix. It 
an be seen that this approa
h performs well. In the mostdiÆ
ult 
ases, with small sample size, large e�e
ts and low reliability of measurement,the standard errors somewhat underestimate the true sampling variation. This ismainly due to right-skewed sampling distributions of the estimates in these 
ases, whi
his also re
e
ted in a small upward bias of both ML and IRC estimates. The tails of the
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t the 
overage of the Wald-based 95% 
on�den
eintervals for the parameters, whi
h is 93.6{97.1% a
ross all the simulations.The last two 
olumns of Tables 1 and 2 examine a simpli�ed estimate of thestandard errors of the IRC estimates that is obtained by using only the �rst term on theright-hand side of (17), and omitting the se
ond. In other words, this simply ignores theun
ertainty in the estimated parameters of the exposure and measurement models fromthe �rst stage. Su
h an approa
h would be very 
onvenient in pra
ti
e, be
ause itentails using the estimated standard errors from the se
ond-stage model dire
tly,without any further adjustment. In the 
ases 
onsidered here, this simpli�
ation woulddo us little harm sin
e the 
overage of the 
on�den
e intervals (shown in the 
olumn\C95-2" of the tables) is still quite satisfa
tory. The reason for this is indi
ated by thelast 
olumn of the tables, whi
h shows the average per
entage that the se
ond term of(17) 
ontributes to the full estimated standard error. This is mostly around 2%, risingto 6.4% in the most 
hallenging 
on�guration 
onsidered here.Tables 3 and 4 
ompare the simulation results for IRC and RC estimators, omittingthe full ML estimators be
ause they are so similar to IRC. The fo
us here is on the�nite-sample means and variabilities of the estimators, to examine their relativeperforman
es in di�erent settings. We note also that 
omputing times for IRC and RCwere very similar, typi
ally around 10% higher for IRC.=========================Insert Table 3 about here=========================
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hometrika Submission February 3, 2012 24=========================Insert Table 4 about here=========================The results show that best performan
es o

ur in di�erent 
ir
umstan
es for thetwo estimators. IRC (and ML) estimators have an upward bias in small samples, due tothe right-skewness of their sampling distributions, but the bias disappears in largersamples be
ause these estimators are 
onsistent. In 
ontrast, RC estimators have a biasdue to their approximate nature, whi
h is largest when the reliability of measurement islow or when the regression 
oeÆ
ients are large. Taking into a

ount both the biasesand sampling varian
es, root mean squared errors tend to be smaller for RC when thesample size is small or moderate, and for IRC when the sample size is reasonably large.The bias of RC means that in the most diÆ
ult 
ases the 
overage of 
on�den
eintervals based on them is substantially below the nominal level, while for IRC the
overage levels are always adequate.In summary, the simulation study suggests, �rst, that we 
an generally repla
e MLwith pseudo-ML (IRC) estimation, with essentially no loss in eÆ
ien
y of estimation butwith a substantial gain in 
omputational speed. Se
ond, when 
omparing IRC with RC,we �nd that the preferred estimator 
an depend on the 
ir
umstan
es of the analysis.RC tends to perform best with smaller samples and relatively mild measurement errorproblems, whereas IRC does best when the sample sizes are large, measurement error issevere or the e�e
ts being estimated are strong. The 
hoi
e between RC and IRC is notinformed by speed of 
omputation, whi
h is essentially the same for both of them.
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al illustration: Ability and high earningsTo illustrate 
ovariate measurement error modelling in pra
ti
e, we apply theinvestigated methods to a dataset on 935 non-bla
k men from the 1980 wave of theYoung Men's Cohort of the U.S. National Longitudinal Survey (NLS), previouslyanalysed by Grili
hes (1976) and Bla
kburn and Neumark (1992), among others.The binary out
ome yi we 
onsider here is being a high earner, de�ned as having asalary above the 90% fra
tile of the sample distribution. The 
ovariate of main interestis ability xi, also denoted [Ability℄, whi
h is measured with error. Three 
ovariateswhi
h are assumed measured without error are also in
luded: working experien
e inyears zi1 [Exper℄ (sample mean 11.6, s.d. 4.4), a dummy variable for living in an urbanarea zi2 [Urban℄ (71.8% of the sample) and a dummy variable for being bla
k zi3 [Bla
k℄(12.8%).Under the standard assumptions previously stated, the out
ome model islogitfPr(yi = 1jxi; zi1; zi2; zi3)g = �z0 + �z1zi1 + �z2zi2 + �z3zi3 + �xxi;and the exposure model isxi = 
0 + 
1zi1 + 
2zi2 + 
3zi3 + �i; �i � N(0;  ):The mens' abilities are measured by two fallible measures. The �rst measure is anIQ test wi1 [IQ℄, 
olle
ted as part of a survey of the respondents' s
hools 
ondu
ted in1968. Sin
e a wide variety of IQ tests were used in di�erent states these were re
odedinto \IQ equivalents" by the Center for Human Resour
es Resear
h at the Ohio StateUniversity whi
h administers the NLS. The se
ond measure is a test of \Knowledge of

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Psy
hometrika Submission February 3, 2012 26World of Work" wi2 [Know℄, whi
h examines respondents' knowledge of the labormarket, 
overing the duties, edu
ational attainment, and relative earnings of teno

upations. It is intended to re
e
t both the quantity and quality of s
hooling,intelligen
e, and motivation (
uriosity about the outside world). The seminal paper byGrili
hes (1976) provides a lu
id dis
ussion of the data, variables and spe
i�
ationissues.We use versions of the two fallible measures standardized to have sample mean 0and varian
e 1. Denoting these standardized variables by wi1 and wi2, we 
onsider the
lassi
al measurement modelwij = xi + Æij; Æij � N(0; �); j=1; 2:This is obtained from the general model (1) for a s
alar xi by assuming �1 = �2 = 1,and then setting �1 = �2 = 0 and �1 = �2 = 1 be
ause the marginal means and varian
esof wi1 and wi2 are equal. Note that for identi�ability the model thus spe
i�es that thetwo measures have equal loadings, i.e., that on the s
ale of the standardized measuresthey are equally dis
riminating measures of ability. This assumption 
ould be relaxed ifmore than two fallible measures were available.=========================Insert Table 5 about here=========================Estimates from ML, IRC and RC are shown in Table 5. The parameter estimatesfor the out
ome model are pra
ti
ally identi
al for ML and IRC, whereas the estimates
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Psy
hometrika Submission February 3, 2012 27from RC are smaller as expe
ted. In parti
ular, the estimate for the parameter of maininterest �x from IRC, �̂x = 2:50, is essentially identi
al to the ML estimate whereas theestimate from RC is �̂x = 2:35.The estimated standard errors of estimates of � are pra
ti
ally identi
al for MLand IRC, apart from numeri
al di�eren
es. This indi
ates that the loss of eÆ
ien
y inestimating the parameters of the exposure and measurement models from only Stage 1of IRC is e�e
tively nill; indeed, estimates of these parameters and asso
iated estimatedstandard errors are identi
al to the full ML results to at least three de
imal pla
es.Un
ertainty from Stage 1, i.e. the se
ond term of the varian
e matrix (17), 
ontributesaround 8% of the estimated standard error of �̂x for IRC. We also note that the sum ofthe maximized log-likelihood 
omponents for IRC of ` = �2738:41 is very 
lose to themaximum of the log-likelihood ` = �2738:38.From the estimated exposure model, the ability measure is signi�
antly asso
iatedwith urbanity, ra
e and working experien
e. Its 
onditional varian
e given these
ovariates is  ̂ = 0:29. The estimated measurement error varian
e is �̂ = 0:58, and the
onditional reliability of the measures (given the 
ovariates) is thus  ̂=( ̂ + �̂) = 0:33.Regarding the out
ome model, there is a strong estimated asso
iation between theability measure and high earnings when 
ontrolling for working experien
e, urbanity,and ra
e. The estimated 
oeÆ
ient of �̂x = 2:50 translates to an odds ratio of 3.8 forbeing a high earner 
orresponding to an in
rease of one 
onditional standard deviationin ability. The other 
ovariates are retained in the model, but they 
ould possibly alsohave been omitted be
ause they do not have statisti
ally signi�
ant asso
iations with
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hometrika Submission February 3, 2012 28high earnings at the 5% level. It is worth noting that if the model was simpli�ed byomitting some 
ontrol variables, we 
ould still 
hoose to use the predi
ted values e�i andvarian
es !̂i 
onditional on all of them, without re-
al
ulating these predi
tions. Thisonly requires the modi�
ation that in the 
al
ulation of the standard errors (as shownin the Appendix) the 
orresponding elements of �z are set to 0.Dis
ussionIn this arti
le we have proposed an improved regression 
alibration approa
h to theestimation of generalized linear models with 
ovariate measurement error, a pseudomaximum likelihood method that simultaneously addresses the 
omputational 
hallengeof maximum likelihood and the in
onsisten
y of 
onventional regression 
alibration. Ade
omposed form of the likelihood was exploited, where the 
omponent for themeasurement and exposure models is in 
losed form and trivial to maximize and the
omponent for the out
ome model is a

urately maximized using 
rude and fastnumeri
al integration.Our simulations show that improved regression 
alibration produ
es parameterestimates that are pra
ti
ally indistinguishable from those produ
ed by maximumlikelihood. Interval estimation based on the asymptoti
 
ovarian
e matrix for improvedregression 
alibration that was derived in this arti
le has ex
ellent performan
e. Eveninterval estimation based on the naive estimator of the asymptoti
 
ovarian
e matrix(ignoring the un
ertainty in
urred in the �rst step) usually performs well. Compared to
onventional regression 
alibration, improved regression 
alibration o�ers little or no
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hometrika Submission February 3, 2012 29advantage when sample sizes are small, but performs best when samples are reasonablylarge and espe
ially when the measurement error or the e�e
ts are not small.Both the fallibly measured 
ovariates and their measures are 
ontinuous in themodels 
onsidered here. Improved regression 
alibration 
an also be used when theobserved measures are 
ategori
al, in whi
h 
ase 
ategori
al fa
tor models would beused as measurement models. Sin
e the predi
tive distributions are then no longernormal it is not obvious that improved regression 
alibration would work well. If boththe fallibly measured 
ovariates and their measures are 
ategori
al, the problem is oneof mis
lassi�
ation where integration is repla
ed by summation and maximumlikelihood estimation be
omes 
omputationally straightforward.
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hometrika Submission February 3, 2012 30AppendixHere we des
ribe the 
al
ulation of the estimate (18) of the matrix IME;O, whi
h isused in the 
al
ulation of the varian
e matrix (17) of b#IRCO . Let us �rst introdu
e some
onvenient shorthand notation for the logarithm of the likelihood 
ontribution (6):log g(yi;wijzi;#)| {z }� gi = log Z � gyiz }| {g(yijxi; zi;#O) � gxiz }| {g(xijwi; zi;#ME) dxi| {z }� g1i + log g(wijzi;#ME)| {z }� g2i :Here gxi and g2i are multivariate normal density fun
tions with parameters�1i = (�0i; ve
(
i)0)0 and �2i = (�0i; ve
(�i)0)0 respe
tively, as de�ned by (11){(12) and(9){(10). These in turn are fun
tions of the parameters� = (� 0; ve
(�)0; ve
(�)0; ve
(�)0; ve
(	)0)0, and #ME are the distin
t, unknown elementsof �.The required gradients for (18) areu#O;i(#) = � log gi�#O = 1g1i �g1i�#O and (A1)u#ME;i(#) = � log gi�#ME = 1g1i � �g1i��01i ��1i��0 ���#0ME�0 + �� log g2i��02i ��2i��0 ���#0ME�0 ; (A2)where g1i = Z gyi gxi dxi; (A3)�g1i�#O = Z �gyi�#O gxi dxi and (A4)�g1i��01i = Z gyi �gxi��01i dxi: (A5)Estimated values for these quantities, and thus for the estimated matrix bIME;O givenby (18), are obtained by substituting estimates b#IRC of the parameters.
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Psy
hometrika Submission February 3, 2012 31Starting with (A2), we note that ea
h element of � is either a known 
onstant orequal to a single element of #ME; for illustration, 
onsider � as shown in (2). Supposethat � is of length t and #ME of length u. Then ��=�#0ME is a t� u matrix whose (i; j)thelement is 1 if the ith element of � is equal to the jth element of #ME, and 0 otherwise.Next, the elements of ��2i=��0 in (A2) are��i�� 0 = Ci;��i�ve
(�)0 = (�zi)0 
Ci;��i�ve
(�)0 = 0;��i�ve
(�)0 = z0i 
 (Ci�);��i�ve
(	)0 = 0;�ve
(�i)�� 0 = 0;�ve
(�i)�ve
(�)0 = [(Ci�	)
Ci℄ + [Ci 
 (Ci�	)℄Krm;�ve
(�i)�ve
(�)0 = Ci 
Ci;�ve
(�i)�ve
(�)0 = 0;�ve
(�i)�ve
(	)0 = (Ci�)
 (Ci�);and the elements of ��1i=��0 are��i�� 0 = ��i��0i ��i�� 0 ;��i�ve
(�)0 = f[C0i��1i (wi � �i)℄0 
	gKrm+ ��i��0i ��i�ve
(�)0 + ��i�ve
(��1i )0 �ve
(��1i )�ve
(�i)0 �ve
(�i)�ve
(�)0 ;��i�ve
(�)0 = ��i�ve
(��1i )0 �ve
(��1i )�ve
(�i)0 �ve
(�i)�ve
(�)0 ;
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(�)0 = z0i 
 Im + ��i��0i ��i�ve
(�)0 ;��i�ve
(	)0 = [�0C0i��1i (wi � �i)℄0 
 Im+ ��i�ve
(��1i )0 �ve
(��1i )�ve
(�i)0 �ve
(�i)�ve
(	)0 ;�ve
(
i)�� 0 = 0;�ve
(
i)�ve
(�)0 = ��[(	�0C0i��1i Ci)
	℄Krm + [	
 (	�0C0i��1i Ci)℄	+ �ve
(
i)�ve
(��1i )0 �ve
(��1i )�ve
(�i)0 �ve
(�i)�ve
(�)0 ;�ve
(
i)�ve
(�)0 = 0;�ve
(
i)�ve
(�)0 = �ve
(
i)�ve
(��1i )0 �ve
(��1i )�ve
(�i)0 �ve
(�i)�ve
(�) ;�ve
(
i)�ve
(	)0 = Im2 � (Im2 +Kmm)[(	�0C0i��1i Ci�)
 Im℄+ �ve
(
i)�ve
(��1i )0 �ve
(��1i )�ve
(�i)0 �ve
(�i)�ve
(	) ;where ��i��0i = �	�0C0i��1i ;��i�ve
(��1i )0 = (wi � �i)0 
 (	�0C0i);�ve
(
i)�ve
(��1i )0 = �(	�0C0i)
 (	�0C0i);�ve
(��1i )�ve
(�i)0 = ���1i 
��1i ;
and ve
(�) denotes the 
olumn-by-
olumn ve
torization operator, 
 the Krone
kerprodu
t, Im an m�m identity matrix, and Krm an rm� rm 
ommutation matrix. Theformulas are obtained through repeated appli
ation of rules of matrix di�erentiation(see e.g., L�utkepohl 1996).
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Psy
hometrika Submission February 3, 2012 33In the se
ond term of (A2), the elements of � log g2i=��02i are � log g2i=��0i= (wi � �i)0��1i and � log g2i=�ve
(�i)0 = ve
[��1i (wi � �i)(wi � �i)0��1i ���1i ℄0=2.The remaining elements of (A1) and (A2) depend also on the out
ome model for yi.For the logisti
 model, whi
h is predominant in appli
ations of generalized linear modelswith 
ovariate measurement error, and whi
h is also used in our simulations andexample, gyi = �yii (1� �i)1�yi where �i = exp(�i)=[1 + exp(�i)℄ and �i = z0i�z + x0i�x.For this model we employ the well-known 
losed-form approximationg1i � (��i )yi(1� ��i )1�yi , where ��i = exp(��i )=[1 + exp(��i )℄, ��i = �1i��1=22i ,�1i = z0i�z + �0i�x, �2i = 1 + d�0x
i�x, and d = 1=1:72 (e.g., Liang and Liu, 1991). Forthis approximation,�g1i�#O = (�1)1�yi ��i (1� ��i ) ��1=22i (z0i; ��0i )0 and�g1i��01i = (�1)1�yi ��i (1� ��i ) ��1=22i [�0x; �(d=2)�1i��12i (�0x 
 �0x)℄;where ��i = �i � �1i��12i d
i�x. These formulas 
omplete expli
it expressions for (A1)and (A2).In our data analysis we also apply a similar idea for the 
onventional regression
alibration estimate of #O, whi
h uses the �rst-order approximationg1i � (�RCi )yi(1� �RCi )1�yi where �RCi = exp(�1i)=[1 + exp(�1i)℄. We estimate its varian
ematrix analogously to (17){(18), using in (A1) and (A2) �g1i=�#O = (�g1i=��1i) (z0i; �0)0and �g1i=��01i = (�g1i=��1i) [�0x; 00℄, where �g1i=��1i = (�1)1�yi �RCi (1� �RCi ).For other, less popular models, we must evaluate the integrals involved in
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Psy
hometrika Submission February 3, 2012 34(A3){(A5). Note �rst that the partial derivatives �gxi=��01i are given by�gxi��0i = (xi � �i)0
�1i gxi and�gxi�ve
(
i)0 = (1=2)ve
[
�1i (xi � �i)(xi � �i)0
�1i �
�1i ℄0 gxi:Substituting these into (A5), we see that ea
h of the integrals there, and also in (A3)and (A4), are of the form R hi(xi)gxi dxi for some fun
tion hi(xi) of xi, integrated overthe multivariate normal density gxi = g(xijwi; zi;#ME). This suggests that the integrals
an be evaluated through Monte Carlo integration, by �rst generating M independentdraws xij; j = 1; : : : ;M; from g(xijwi; zi; b#ME), and then approximating the integrals bythe averages M�1PMj=1 hi(xij) for ea
h of the hi(�). Only one set of random draws isneeded for all the observations i, if we �rst generate M un
orrelated m-ve
tors uj ofstandard normal random variates and then 
al
ulate xij = e�i +Biuj, where b
i = BiB0i.
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 �z - yx���������*�x��R�2��	�1w1 w2Figure 1.Graph of generalized linear model with 
ovariate measurement error.
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hometrika Submission February 3, 2012 42TablesTable 1.Simulation results for maximum likelihood (ML) and improved regression 
alibration (IRC) estimates ofregression parameter �x, for di�erent measurement reliabilities �, true values of �x, and sample sizes N .In ea
h 
ase the true value of the other regression 
oeÆ
ient �z is 0.5. The results are based on 1000repli
ations. The table shows the simulation Mean and standard deviation (SD) of the point estimates�̂x, mean of their estimated standard errors (m(SE)) and 
overage per
entage of 95% 
on�den
e intervals(C95). For IRC estimates, also shown are 
overage of 95% intervals based on a naive estimated standarderror whi
h ignores the �rst-stage un
ertainty (C95-2), and the average per
entage that this un
ertainty
ontributes to the full standard errors (%-1).ML IRC�x N Mean SD m(SE) C95 Mean SD m(SE) C95 C95-2 %-1� = 0:750.5 200 0.520 0.253 0.248 96.0 0.520 0.253 0.253 96.2 96.0 2.01000 0.507 0.110 0.107 94.9 0.507 0.110 0.107 95.0 94.9 0.55000 0.500 0.047 0.047 95.5 0.500 0.047 0.047 95.6 95.5 0.21.0 200 1.051 0.294 0.284 96.0 1.051 0.294 0.289 96.2 95.9 2.21000 1.018 0.122 0.121 95.3 1.018 0.123 0.121 95.4 95.3 0.85000 1.001 0.053 0.053 94.9 1.001 0.053 0.053 94.8 94.8 0.51.5 200 1.592 0.371 0.353 97.0 1.592 0.371 0.359 97.1 96.8 2.41000 1.519 0.144 0.147 96.5 1.519 0.144 0.148 96.6 96.4 1.35000 1.502 0.064 0.065 94.8 1.502 0.064 0.065 94.7 94.5 1.0� = 0:50.5 200 0.533 0.310 0.296 96.7 0.533 0.310 0.301 97.0 96.2 2.81000 0.509 0.130 0.124 94.0 0.509 0.130 0.124 94.2 93.6 1.35000 0.500 0.054 0.055 95.5 0.500 0.054 0.055 95.5 95.4 1.01.0 200 1.088 0.409 0.368 96.9 1.089 0.411 0.375 96.9 96.6 4.71000 1.006 0.148 0.146 95.9 1.007 0.148 0.147 95.9 95.4 3.35000 1.005 0.065 0.065 95.4 1.005 0.065 0.065 95.5 95.0 3.01.5 200 1.666 0.586 0.519 96.7 1.664 0.584 0.523 96.9 96.5 6.41000 1.527 0.189 0.193 96.4 1.528 0.190 0.194 96.4 95.1 5.45000 1.509 0.083 0.084 95.5 1.510 0.083 0.085 95.5 94.0 5.1
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Table 2.Simulation results for maximum likelihood (ML) and improved regression 
alibration (IRC) estimatesof regression parameter �z , for di�erent measurement reliabilities �, true values of the other regression
oeÆ
ient �x, and sample sizes N . In ea
h 
ase the true value of �z is 0.5. The results are based on1000 repli
ations. The 
olumns of the table are the same as in Table 1.ML IRC�x N Mean SD m(SE) C95 Mean SD m(SE) C95 C95-2 %-1� = 0:750.5 200 0.508 0.237 0.236 95.8 0.508 0.237 0.239 95.8 95.8 1.21000 0.509 0.105 0.103 94.1 0.509 0.105 0.103 94.1 94.1 0.35000 0.498 0.045 0.045 95.8 0.498 0.045 0.045 95.9 95.8 0.11.0 200 0.514 0.234 0.236 96.2 0.514 0.234 0.239 96.5 96.2 1.41000 0.511 0.104 0.102 94.4 0.511 0.104 0.103 94.6 94.3 0.45000 0.497 0.044 0.045 95.8 0.497 0.044 0.045 95.8 95.8 0.21.5 200 0.513 0.255 0.244 96.1 0.513 0.255 0.247 96.1 95.9 1.51000 0.507 0.109 0.105 94.4 0.507 0.109 0.105 94.7 94.4 0.65000 0.499 0.047 0.047 94.1 0.499 0.047 0.047 94.1 93.9 0.4� = 0:50.5 200 0.507 0.242 0.241 96.1 0.507 0.242 0.244 96.3 95.7 1.61000 0.508 0.107 0.104 93.6 0.508 0.107 0.105 93.6 93.5 0.65000 0.497 0.045 0.046 95.2 0.497 0.045 0.046 95.2 95.2 0.31.0 200 0.514 0.246 0.247 97.0 0.514 0.246 0.250 96.9 96.3 2.41000 0.504 0.108 0.105 93.6 0.504 0.108 0.105 93.6 93.4 1.45000 0.500 0.047 0.047 95.4 0.500 0.047 0.047 95.4 94.9 1.11.5 200 0.514 0.281 0.266 96.4 0.514 0.280 0.269 96.7 96.0 3.51000 0.506 0.114 0.111 94.6 0.506 0.114 0.111 94.9 94.1 2.45000 0.501 0.048 0.049 95.1 0.502 0.048 0.049 95.1 94.5 2.2
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Table 3.Simulation results for improved regression 
alibration (IRC) and 
onventional regression 
alibration(RC) estimates of regression parameter �x, for di�erent measurement reliabilities �, true values of �x,and sample sizes N . In ea
h 
ase the true value of the other regression 
oeÆ
ient �z is 0.5. The resultsare based on 1000 repli
ations. The table shows the simulation Mean, % bias and root mean squarederror (RMSE) of the point estimates of �x, and 
overage per
entage of 95% 
on�den
e intervals (C95).IRC RC�x N Mean % Bias RMSE C95 Mean % Bias RMSE C95� = 0:750.5 200 0.520 4.0 0.254 96.2 0.515 3.0 0.247 96.21000 0.507 1.4 0.111 95.0 0.504 0.8 0.109 94.95000 0.500 0.0 0.047 95.6 0.497 -0.5 0.046 95.61.0 200 1.051 5.1 0.299 96.2 1.020 2.0 0.268 95.31000 1.018 1.8 0.124 95.4 0.993 -0.7 0.114 94.25000 1.001 0.1 0.053 94.8 0.978 -2.2 0.054 92.41.5 200 1.592 6.2 0.382 97.1 1.492 -0.6 0.301 95.31000 1.519 1.3 0.145 96.6 1.439 -4.1 0.137 91.95000 1.502 0.1 0.064 94.7 1.426 -4.9 0.092 72.5� = 0:50.5 200 0.533 6.6 0.312 97.0 0.518 3.7 0.288 95.91000 0.509 1.9 0.131 94.2 0.502 0.4 0.125 93.85000 0.500 0.1 0.054 95.5 0.494 -1.1 0.053 95.51.0 200 1.089 8.9 0.421 96.9 1.005 0.5 0.308 94.91000 1.007 0.7 0.148 95.9 0.954 -4.6 0.135 92.45000 1.005 0.5 0.065 95.5 0.954 -4.6 0.072 85.31.5 200 1.664 11.0 0.607 96.9 1.415 -5.7 0.341 92.41000 1.528 1.9 0.192 96.4 1.354 -9.7 0.198 79.05000 1.510 0.7 0.084 95.5 1.345 -10.3 0.166 26.8
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Table 4.Simulation results for improved regression 
alibration (IRC) and 
onventional regression 
alibration (RC)estimates of regression parameter �z, for di�erent measurement reliabilities �, true values of the otherregression 
oeÆ
ient �x, and sample sizes N . In ea
h 
ase the true value of �z is 0.5. The results arebased on 1000 repli
ations. The 
olumns of the table are the same as in Table 3.IRC RC�x N Mean % Bias RMSE C95 Mean % Bias RMSE C95� = 0:750.5 200 0.508 1.5 0.237 95.8 0.505 0.9 0.236 95.91000 0.509 1.8 0.105 94.1 0.506 1.2 0.105 94.15000 0.498 -0.5 0.045 95.9 0.495 -1.0 0.045 95.71.0 200 0.514 2.9 0.234 96.5 0.502 0.3 0.228 96.41000 0.511 2.2 0.104 94.6 0.499 -0.2 0.102 94.15000 0.497 -0.5 0.044 95.8 0.486 -2.7 0.045 94.51.5 200 0.513 2.7 0.256 96.1 0.485 -3.1 0.241 95.61000 0.507 1.4 0.109 94.7 0.481 -3.8 0.105 94.25000 0.499 -0.3 0.047 94.1 0.473 -5.3 0.052 90.3� = 0:50.5 200 0.507 1.4 0.242 96.3 0.500 -0.1 0.240 95.91000 0.508 1.7 0.107 93.6 0.502 0.4 0.106 93.85000 0.497 -0.5 0.045 95.2 0.492 -1.7 0.046 95.01.0 200 0.514 2.9 0.247 96.9 0.485 -3.1 0.232 96.11000 0.504 0.8 0.108 93.6 0.479 -4.3 0.106 93.35000 0.500 -0.0 0.047 95.4 0.475 -5.0 0.051 91.21.5 200 0.514 2.8 0.281 96.7 0.451 -9.9 0.248 95.11000 0.506 1.3 0.115 94.9 0.450 -9.9 0.114 90.55000 0.502 0.3 0.048 95.1 0.447 -10.6 0.068 78.8
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Table 5.Ability and high earnings: Estimates for logisti
 regression with 
ovariate measurement error based onmaximum likelihood (ML), improved regression 
alibration (IRC) and 
onventional regression 
alibration(RC). For IRC, SE are estimated standard errors based on asymptoti
 
ovarian
e matrix derived in thisarti
le and SE-2 are naive estimated standard errors ignoring un
ertainty in Stage-1 estimates.ML IRC RCParameter Covariate Est (SE) Est (SE) (SE-2) Est (SE)Out
ome model:�z0 -3.68 (0.57) -3.68 (0.56) (0.55) -3.29 (0.45)�z1 [Exper℄ 0.02 (0.03) 0.02 (0.03) (0.03) 0.02 (0.03)�z2 [Urban℄ 0.50 (0.34) 0.50 (0.33) (0.33) 0.45 (0.31)�z3 [Bla
k℄ 0.52 (0.76) 0.52 (0.74) (0.73) 0.48 (0.68)�x [Ability℄ 2.49 (0.50) 2.50 (0.51) (0.47) 2.35 (0.42)Exposure model:
0 0.20 (0.08) 0.20 (0.08) (0.08) 0.20 (0.08)
1 [Exper℄ -0.02 (0.01) -0.02 (0.01) (0.01) -0.02 (0.01)
2 [Urban℄ 0.20 (0.06) 0.20 (0.06) (0.06) 0.20 (0.06)
3 [Bla
k℄ -1.00 (0.07) -1.00 (0.07) (0.07) -1.00 (0.07) 0.29 (0.03) 0.29 (0.03) (0.03) 0.29 (0.03)Measurement model:� 0.58 (0.03) 0.59 (0.03) (0.03) 0.59 (0.03)Log-likelihood `=-2738.38 `=-2738.41
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