67 research outputs found

    Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensis MR-1

    Get PDF
    BackgroundEtrA in Shewanella oneidensis MR-1, a model organism for study of adaptation to varied redox niches, shares 73.6% and 50.8% amino acid sequence identity with the oxygen-sensing regulators Fnr in E. coli and Anr in Pseudomonas aeruginosa, respectively; however, its regulatory role of anaerobic metabolism in Shewanella spp. is complex and not well understood.ResultsThe expression of the nap genes, nrfA, cymA and hcp was significantly reduced in etrA deletion mutant EtrA7-1; however, limited anaerobic growth and nitrate reduction occurred, suggesting that multiple regulators control nitrate reduction in this strain. Dimethyl sulfoxide (DMSO) and fumarate reductase gene expression was down-regulated at least 2-fold in the mutant, which, showed lower or no reduction of these electron acceptors when compared to the wild type, suggesting both respiratory pathways are under EtrA control. Transcript analysis further suggested a role of EtrA in prophage activation and down-regulation of genes implicated in aerobic metabolism.ConclusionIn contrast to previous studies that attributed a minor regulatory role to EtrA in Shewanella spp., this study demonstrates that EtrA acts as a global transcriptional regulator and, in conjunction with other regulators, fine-tunes the expression of genes involved in anaerobic metabolism in S. oneidensis strain MR-1. Transcriptomic and sequence analyses of the genes differentially expressed showed that those mostly affected by the mutation belonged to the "Energy metabolism" category, while stress-related genes were indirectly regulated in the mutant possibly as a result of a secondary perturbation (e.g. oxidative stress, starvation). We also conclude based on sequence, physiological and expression analyses that this regulator is more appropriately termed Fnr and recommend this descriptor be used in future publications

    Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in \u3cem\u3eShewanella oneidensis\u3c/em\u3e MR-1

    Get PDF
    Background EtrA in Shewanella oneidensis MR-1, a model organism for study of adaptation to varied redox niches, shares 73.6% and 50.8% amino acid sequence identity with the oxygen-sensing regulators Fnr in E. coli and Anr in Pseudomonas aeruginosa, respectively; however, its regulatory role of anaerobic metabolism in Shewanella spp. is complex and not well understood. Results The expression of the nap genes, nrfA, cymA and hcp was significantly reduced in etrA deletion mutant EtrA7-1; however, limited anaerobic growth and nitrate reduction occurred, suggesting that multiple regulators control nitrate reduction in this strain. Dimethyl sulfoxide (DMSO) and fumarate reductase gene expression was down-regulated at least 2-fold in the mutant, which, showed lower or no reduction of these electron acceptors when compared to the wild type, suggesting both respiratory pathways are under EtrA control. Transcript analysis further suggested a role of EtrA in prophage activation and down-regulation of genes implicated in aerobic metabolism. Conclusion In contrast to previous studies that attributed a minor regulatory role to EtrA in Shewanella spp., this study demonstrates that EtrA acts as a global transcriptional regulator and, in conjunction with other regulators, fine-tunes the expression of genes involved in anaerobic metabolism in S. oneidensis strain MR-1. Transcriptomic and sequence analyses of the genes differentially expressed showed that those mostly affected by the mutation belonged to the Energy metabolism category, while stress-related genes were indirectly regulated in the mutant possibly as a result of a secondary perturbation (e.g. oxidative stress, starvation). We also conclude based on sequence, physiological and expression analyses that this regulator is more appropriately termed Fnr and recommend this descriptor be used in future publications

    Comparative systems biology across an evolutionary gradient within the Shewanella genus

    Get PDF
    Author Posting. © The Authors, 2009. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 106 (2009): 15909-15914, doi:10.1073/pnas.0902000106.To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology including the species definition. Here, we take advantage of the completed genomic sequences, expressed proteomic profiles, and physiological studies of ten closely related Shewanella strains and species to provide quantitative insights into this issue. Our analyses revealed that, despite extensive horizontal gene transfer within these genomes, the genotypic and phenotypic similarities among the organisms were generally predictable from their evolutionary relatedness. The power of the predictions depended on the degree of ecological specialization of the organisms evaluated. Using the gradient of evolutionary relatedness formed by these genomes, we were able to partly isolate the effect of ecology from that of evolutionary divergence and rank the different cellular functions in terms of their rates of evolution. Our ranking also revealed that whole-cell protein expression differences among these organisms when grown under identical conditions were relatively larger than differences at the genome level, suggesting that similarity in gene regulation and expression should constitute another important parameter for (new) species description. Collectively, our results provide important new information towards beginning a systems-level understanding of bacterial species and genera.The authors have been supported by the DOE through the Shewanella Federation consortium and the Proteomics Application project. The MSU work relevant to speciation was also supported by NSF (DEB 0516252)

    Improved reference genome for the domestic horse increases assembly contiguity and composition

    Get PDF
    Recent advances in genomic sequencing technology and computational assembly methods have allowed scientists to improve reference genome assemblies in terms of contiguity and composition. EquCab2, a reference genome for the domestic horse, was released in 2007. Although of equal or better quality compared to other first-generation Sanger assemblies, it had many of the shortcomings common to them. In 2014, the equine genomics research community began a project to improve the reference sequence for the horse, building upon the solid foundation of EquCab2 and incorporating new short-read data, long-read data, and proximity ligation data. Here, we present EquCab3. The count of non-N bases in the incorporated chromosomes is improved from 2.33 Gb in EquCab2 to 2.41 Gb in EquCab3. Contiguity has also been improved nearly 40-fold with a contig N50 of 4.5 Mb and scaffold contiguity enhanced to where all but one of the 32 chromosomes is comprised of a single scaffold

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction, and reports on seven research projects.National Institutes of Health Grant 5 R01 DC00194National Institutes of Health Grant P01 DC00119National Institutes of Health Grant F32 DC00073National Institutes of Health Grant 5 R01 DC00473National Institutes of Health Grant 2 R01 DC00238National Institutes of Health Grant 2 R01 DC00235National Institutes of Health Grant 5 P01 DC00361National Institutes of Health Grant T32 DC00006Whitaker Health Sciences Fun

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3 and reports on nine research projects.National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Grant 5 P01 NS23734)National Institutes of Health (Grant 5 R01 NS18682)National Institutes of Health (Grant 5 RO1 NS25995)National Institutes of Health (Grant 5 R01 NS20269)National Institutes of Health (Grant 5 R01 NS20322)National Institutes of Health (Grant 5 T32 NS07047)Johnson and Johnson Foundatio

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on six research projects.Health Sciences FundNational Institutes of Health Grant 5 R01 DC00194National Institutes of Health Grant 8 P01 DC00119National Institutes of Health Grant 5 R01 DC00473National Institutes of Health Grant 5 R01 DC00238National Institutes of Health Grant 5 T32 DC00006National Institutes of Health Grant 5 P01 DC00361National Institutes of Health Grant 5 R01 DC00235Peoples Republic of China FellowshipUnisys Corporation Doctoral FellowshipWhitaker Health Sciences Fellowshi
    corecore