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of anaerobic metabolism in Shewanella

oneidensis MR-1

Claribel Cruz-Garcia'*'°, Alison E Murray™'", Jorge LM Rodrigues®, Jeffrey A Gralnick®, Lee Ann McCue®,

Margaret F Romine®, Frank E Loffler’®?

and James M Tiedje

12,3*

Abstract

complex and not well understood.

metabolism.

Background: EtrA in Shewanella oneidensis MR-1, a model organism for study of adaptation to varied redox niches,
shares 73.6% and 50.8% amino acid sequence identity with the oxygen-sensing regulators Fnr in £. coli and Anr in
Pseudomonas aeruginosa, respectively; however, its regulatory role of anaerobic metabolism in Shewanella spp. is

Results: The expression of the nap genes, nrfA, cymA and hcp was significantly reduced in etrA deletion mutant
EtrA7-1; however, limited anaerobic growth and nitrate reduction occurred, suggesting that multiple regulators
control nitrate reduction in this strain. Dimethyl sulfoxide (DMSO) and fumarate reductase gene expression was
down-regulated at least 2-fold in the mutant, which, showed lower or no reduction of these electron acceptors
when compared to the wild type, suggesting both respiratory pathways are under EtrA control. Transcript analysis
further suggested a role of EtrA in prophage activation and down-regulation of genes implicated in aerobic

Conclusion: In contrast to previous studies that attributed a minor regulatory role to EtrA in Shewanella spp., this
study demonstrates that EtrA acts as a global transcriptional regulator and, in conjunction with other regulators,
fine-tunes the expression of genes involved in anaerobic metabolism in S. oneidensis strain MR-1. Transcriptomic
and sequence analyses of the genes differentially expressed showed that those mostly affected by the mutation
belonged to the “Energy metabolism” category, while stress-related genes were indirectly regulated in the mutant
possibly as a result of a secondary perturbation (e.g. oxidative stress, starvation). We also conclude based on
sequence, physiological and expression analyses that this regulator is more appropriately termed Fnr and
recommend this descriptor be used in future publications.

Background

Due to its respiratory versatility, Shewanella oneidensis
strain MR-1 serves as a model organism for studying
the regulation of aerobic and anaerobic growth [1-3]. In
contrast to Escherichia coli, the regulatory systems that
control transcription of genes responsible for different
respiratory processes are poorly understood in environ-
mentally relevant Shewanella spp. [4-7]. In E. coli, the
transition from aerobic to anaerobic metabolism is pri-
marily regulated by Fnr (fumarate and nitrate reduction
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regulator) and by the two-component regulatory system
ArcAB (aerobic respiration control) [8-11]. A gene
expression study in E. coli K12 indicated that one-third
of its 4,290 genes were differentially expressed during
aerobic versus anaerobic growth [12]. Among the differ-
entially expressed genes, 712 (49%) genes were directly
or indirectly affected by Fnr. Fnr possesses a [4Fe-4S]**
cluster that acts as an oxygen sensory domain [13]. Fnr
in its active dimeric form binds to target DNA
sequences inducing or repressing transcription [14,15].
Under aerobic conditions, or when oxygen levels
increase, an Fe?* atom in the [4Fe-4S]** cluster is oxi-
dized resulting in the formation of a [2Fe-2S]*" cluster
via a [3Fe-4S]'* intermediate. This oxidation causes a

© 2011 Cruz-Garcia et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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conformation change in Fnr, thus altering its affinity to
DNA and regulatory control of transcription [14,15].

Studies with strain MR-1 mutants have identified
three important regulators of anaerobic metabolism:
EtrA (electron transport regulator protein), ArcA and
CRP (cyclic AMP receptor protein) [4,5,16-19].
Sequence alignment of the protein encoded by etrA
reveal that the four cysteine residues that form the [4Fe-
4S]** cluster in Fnr are conserved in EtrA [16]. In a
gene replacement study, etrA of strain MR-1 restored
wild type physiology of an E. coli fur deletion mutant
[16]. EtrA shares 73.6% and 50.8% of amino acid
sequence identity with Fnr in E. coli and Anr (arginine
deaminase and nitrate reductase anaerobic regulator) in
Pseudomonas aeruginosa, respectively. This high degree
of similarity suggests that EtrA has a regulatory function
in MR-1, possibly by sensing oxygen. Despite the lack of
physiological evidence to support a regulatory role of
EtrA in the anaerobic metabolism of strain MR-1 [7], a
gene expression study using a partial microarray (691
OREFs) of the strain MR-1’s genome suggested involve-
ment of EtrA in the regulation of the transcription of
genes associated with aerobic and anaerobic metabolism
[6]. Growth experiments with an efrA deletion mutant
in S. oneidensis strain DSP10 (a spontaneous rifampicin
resistant mutant of MR-1) implicated EtrA in the regu-
lation of genes related to aerobic and anaerobic metabo-
lism, similar to what has been observed for Fnr in
E. coli [12,20]. Unfortunately, the implications of these
findings cannot be interpreted unambiguously since the
rifampicin resistance of strain DSP10 influences electron
transport [21].

To examine the regulatory role of EtrA in strain MR-1
in more detail, we generated an etrA knockout mutant
EtrA7-1 in a wild type background. Growth and phenoty-
pic characterization of this mutant combined with a whole
genome transcriptome analysis confirms that EtrA regu-
lates nitrate and fumarate reduction, plus provides experi-
mental evidence for its positive regulatory role in DMSO
reduction. Our genome-wide expression analysis shows
differential expression of 612 genes for which sequence
analysis recognized a EtrA motif for 72 of the operons
encoding 118 genes, suggesting that their regulation is via
direct interaction of EtrA with its promoters. Most of
these genes are associated with metabolic functions.

Results

Genotypic and phenotypic characterization of a AetrA:
loxP mutant

The growth of the etrA knockout mutant EtrA7-1 with
nitrate was significantly impaired as cultures reached a
maximum ODgg of 0.02, at least 5-fold lower than the
wild type strain (Figure 1). In addition, the doubling time
for the mutant under these conditions was approximately
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Figure 1 Anaerobic growth of EtrA7-1 and the wild type
strains on lactate and nitrate. Wild type strain (closed diamonds),
EtrA7-1 complement strain (open squares), EtrA7-1 (open diamonds)
and EtrA7-1 harboring pCM62 (open triangles) served as a negative

control. Data are means and SD from three independent cultures.

10 h compared to a doubling time of 2 h for the wild
type. Plasmid pCCGO3 carrying etrA, but not the parental
pCM62 vector lacking etrA, restored near wild type
growth to the EtrA7-1 mutant, which confirms that the
observed phenotype was attributable to the deletion of
etrA. After 10 h of incubation, nitrate was reduced in
wild type and complemented EtrA7-1 cultures though
less nitrate was reduced in the latter consistent with its
slightly slower growth (Figure 2). After 23 h, both the
wild type and EtrA7-1 complement had completely con-
verted nitrate and nitrite to ammonia, while nitrite was
the major product in cultures of the EtrA7-1 mutant and
the control strain harboring pCM62 (Figure 2).
Anaerobic cultures of the mutant and the wild type
strain were analyzed for the reduction of different elec-
tron acceptors with lactate as the electron donor. No
growth of the EtrA7-1 mutant was observed with fuma-
rate as electron acceptor whereas the wild type strain
reached an ODggp of 0.053 + 0.005. Limited growth
(approximately 50% lower ODgoo compared with the
wild type cultures) was observed in mutant cultures
amended with trimethylamine N-oxide (TMAO) or thio-
sulfate (data not shown). No OD increases with the
mutant and the wild type were measured with DMSO
provided as electron acceptor at 2 and 10 mM; however,
HPLC analyses of cultures with 2 mM DMSO revealed
that DMSO was completely consumed in wild type cul-
tures, whereas no DMSO consumption was evident in
the mutant cultures (Figure 3). No changes in DMSO
concentrations were observed in cultures with 10 mM
DMSO. No significant differences in Fe(III), Mn(IV) and
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Figure 2 Nitrate consumption and products formed during growth of the EtrA7-1 and wild type strains in Figure 1. Samples were
collected after 10 h (panel A) and 23 h (panel B) and analyzed for nitrate (black bar), nitrite (gray bar) and ammonium (white bar). Data are

sulfite reduction rates were observed between the wild
type and the EtrA7-1 deletion mutant (Figure 3). Anae-
robic cultures of the mutant and the wild type strains
grown with pyruvate instead of lactate as electron donor
showed similar results, i.e., the mutant showed limited
or no growth with nitrate, fumarate and DMSO pro-
vided as electron acceptors compared to the wild type
(Figure 4). Similar to the lactate-amended cultures, the
rates of nitrate, fumarate and DMSO reduction in wild

type cultures exceeded those measured in cultures of
the mutant strain (Table 1). Resting cell assays corrobo-
rated these findings and nitrate reduction and ammo-
nium production occurred at higher rates in assays with
wild type cells. Complete stoichiometric conversion to
ammonium also occurred in the assays with mutant
cells, although lower rates and a 3-fold longer incuba-
tion were required for complete reduction (i.e., 24 h for
the EtrA7-1 versus 8 h for the wild type) (Figure 5).
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Figure 3 Substrate consumption and intermediate production in anaerobic cultures of the wild type (closed symbols) and EtrA7-1
(open symbols) mutant strains grown with lactate and different electron acceptors. DMSO consumption, squares; Fe(ll) production,
triangles; Mn(ll) production, diamonds and sulfite consumption, circles. Data are means and SD from three independent cultures.
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Figure 4 Growth of the wild type (closed symbols) and Etra7-1 (open symbols) strains with pyruvate and the indicated electron
acceptor. (Panel A) DMSO consumption - squares (Panel B), fumarate consumption - diamonds (Panel C) and nitrate comsumption - triangles
(Panel D). Data are means and SD from three independent cultures.
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Table 1 Comparison of reduction rates of several electron
acceptors with pyruvate as electron donor by S.
oneidensis MR-1 wild type strain and etrA knockout
strain EtrA7-1

Electron acceptor

Wild type (uM min™")  ETRA7-1 (UM min™)

Nitrate 12+0.1 0.3 + 001
Fumarate 64 + 06 38+ 02
DMSO 08 +02 04+ 0.1

Data are means * the standard deviation from three independent cultures.

Effects of etrA deletion on transcription

The global transcriptome profile of mutant strain EtrA7-
1 grown anaerobically with nitrate as the sole electron
acceptor was compared to that of the wild type under
the same growth conditions. A complete list of all the
genes differentially expressed two-fold or higher is pro-
vided as supplemental information (Additional file 1).
Out of 612 differentially transcribed genes in the EtrA7-
1 mutant relative to the wild type, 289 were up-regu-
lated and 323 were down-regulated. The differentially
transcribed genes were classified in 19 functional “TIGR
Role” categories (Additional file 2) based on the MR-1
genome annotation (GenBank accession number
AE014299) [22]. Genes with unknown functions repre-
sented the largest category of up-regulated (14.8%) and
the second most common category of down-regulated
genes (17.3%). Genes associated with energy metabolism
were the largest category (17.6%) of down-regulated
genes (Additional file 2). Among the up-regulated genes,
the “Protein synthesis” category ranked second (12.5%)
and the “Other categories” ranked third (11.4%). This
latter category included phage-, transposase- and plas-
mid-related genes. The “Energy metabolism” category
represented 9.7%, ranking fourth.

Concentration (mM)

0 5 10 15 20 25 30
Incubation Time (h)
Figure 5 Nitrate reduction in resting cell assays with the wild
type (closed symbols) and the ETRA7-1 (open symbols) mutant
strains. Nitrate - triangles, nitrite - squares and ammonium - circles.
Nitrate measurements in killed controls did not change, while nitrite
and ammonium were not detected (data not shown).
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Identification of putative EtrA binding sites

The promoters of the differentially expressed genes were
examined for putative EtrA binding sites in order to
identify those genes that were likely directly regulated
by EtrA from the many genes whose expression changes
were most likely due to secondary effects. For example,
the up-regulation of phage-related genes is likely a
response to stress, and not a direct result of the etrA
deletion. Putative EtrA binding sites were identified for
those genes that showed at least 2.5 fold change in the
EtrA7-1 mutant relative to the wild type by extracting
the upstream intergenic sequences and applying the
Gibbs centroid sampler to identify a putative binding
site motif. A motif was identified (Additional file 3) that
displays similarities to the E. coli Fnr and Crp binding
sites motifs; this motif was present upstream of 44 oper-
ons that encode a total of 78 genes. The largest propor-
tion of these genes is in the “Energy metabolism”
category (Table 2 and 3, Additional file 2). Binding sites
were detected upstream of an additional 28 operons
when the detected motif (Additional file 3) was used to
scan the upstream intergenic regions of all genes listed
in Additional file 1.

Regulatory role of EtrA in energy metabolism

Since the “Energy metabolism” category contained the
largest group of genes responsive to EtrA, these
genes were analyzed in more detail. Up-regulated genes
(Table 2) in this group included genes encoding a cyto-
chrome ¢ oxidase (ccoPQN [SO2361-2362, SO2364]),
proteins involved in gluconeogenesis such as PckA
(SO0162), and ngrABCDEF-2 genes (SO1103-1108)
encoding NADH:ubiquinone oxidoreductases. From this
group, only the ngr gene clusters had a putative EtrA
binding site.

While the ngr-2 gene cluster was up-regulated in the
etrA knockout mutant, the ngr-1 gene cluster (SO0903-
0907) was down-regulated. Nqr is a Na" pump that dur-
ing respiration generates a sodium motive force to med-
iate solute transport, flagellar motility and ATP
synthesis [23]. Both ngr gene clusters had putative EtrA
binding sites. The microarray data indicated that EtrA
affects the transcription pattern of these genes differ-
ently. Similarly, the etrA deletion had a distinct effect on
the expression of the fdh gene clusters encoding a for-
mate dehydrogenase. The fdh-1 genes (SO4508-4511)
were up-regulated whereas the fdh-2 gene cluster
(SO4512-4515) was down-regulated. An EtrA binding
site was only identified for the fdh-2 cluster and not for
the fdh-1 cluster, indicating EtrA affects both clusters
differently.

Other up-regulated genes in the “Energy metabolism”
category included the succinate dehydrogenase gene
sdhC (SO1927), the succinyl-CoA synthase operon
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sucABCD (SO1930-1933), the butyryl-CoA:acetate CoA-
transferase and the acetyl CoA-synthase genes (SO1891-
1892).

Down-regulated genes in the “Energy metabolism”
category (Table 3), which were predicted for direct regu-
lation by EtrA, included genes involved in anaerobic
metabolism, especially in nitrate respiration like the
napBHGAD operon (SO0845-0849, strongly repressed
with all subunit genes except napD with ratios < 0.18),
and the nrfA (SO3980) genes. cymA (SO4591; ratio
0.39), the prismane protein kcp gene (SO1363), and
neighboring protein /scr gene (S01364), both of which
were strongly repressed (ratios < 0.13) and have been
associated with the nitrate reduction pathway [24-27],
did not show evidence of EtrA binding sites. Also indir-
ectly down-regulated were the fumarate reductase genes
frdAB (SO0398-0399) and fccA (SO0970), the ackA and
the pta (SO2915-16) genes involved in acetate

Table 2 Genes induced in the “Energy Metabolism” category

(reference strain)

Page 6 of 14

production and the ppc (SO0274) gene encoding an
acetate phosphoenol pyruvate carboxylase. The hyaCBA
(502097-2099) genes encoding a quinone-reactive Ni/Fe
hydrogenase were highly indirectly repressed (ratio <
0.11). Among the genes identified as directly down-regu-
lated are all the genes in the operon that encodes the
anaerobic DMSO reductase (dmsAB) (SO1428-32), the
cydAB genes (SO3285-3286) encoding a cytochrome d
oxidase complex, as well as genes involved in metabo-
lism of organic compounds such as the pflAB (SO2912-
2913).

Other down-regulated genes grouped in different cate-
gories included genes encoding ABC transporters
(cydCD [SO3779-3780], SO4446-4448), TonB-dependent
receptors (nosA [SO0630]), and L-lactate permease (lldP
[SO0827]) and a putative lactate permease (SO1522).
The only gene directly down-regulated from this later
group is /ldP (SO0827), for which an EtrA binding site

in anaerobic cultures of EtrA7-1 relative to the wild type

Gene  Gene Relative Predicted EtrA binding sites COG Annotation

ID name expression®

SO0162 pckA 221 (+ 048)° TGTGAGCTGGATCATT phosphoenolpyruvate carboxykinase (ATP)

SO0747  fpr 217 (= 1.01) ferredoxin-NADP reductase

SO1103 ngrA-2 2.25 (£ 0.54) TCTGCGCTAGCTCAAT NADH:ubiquinone oxidoreductase, Na translocating, alpha subunit

CGTGATTGCGATCGCA

SO1104 nqgrB-2 270 (= 1.01) ! NADH:ubiquinone oxidoreductase, Na translocating, hydrophobic
membrane protein NgrB

SO1105 ngrC-2 3.15 (+ .080) l NADH:ubiquinone oxidoreductase, Na translocating, gamma subunit

SO1106 ngrD-2 465 (+ 2.07) ! NADH:ubiquinone oxidoreductase, Na translocating, hydrophobic
membrane protein NgrD

SO1107 ngrE-2 363 (£ 161) l NADH:ubiquinone oxidoreductase, Na translocating, hydrophobic
membrane protein NgrE

SO1108 ngrF-2 1 (x 2.05) l NADH:ubiquinone oxidoreductase, Na translocating, beta subunit

SO1891 scoB 3.77 (£ 1.80) Acetyl-CoA:acetoacetate CoA transferase, alpha subunit AtoA

SO1892 scoA 1(+214) acetate CoA-transferase, beta subunit AtoD

SO1927 sdhC 247 (£ 1.26) succinate dehydrogenase, cytochrome b556 subunit

SO1930 sucA 302 (+122) 2-oxoglutarate dehydrogenase, E1 component

SO1931 sucB 360 (+ 1.58) 2-oxoglutarate dehydrogenase, E2 component, dihydrolipoamide
succinyltransferase

SO1932 sucC 3.29 (+ 098) succinyl-CoA synthase, beta subunit

SO1933  sucD 328 (£ 1.24) succinyl-CoA synthase, alpha subunit

S02361 ccoP 230 (£ 0.92) 1 cytochrome ¢ oxidase, cbb3-type, subunit Il

S02362 ccoQ 44 (+ 1.16) 1 cytochrome ¢ oxidase, cbb3-type, CcoQ subunit

S02364 ccoN 2.76 (= 1.07) CTTGAGCCATGTCAAA cytochrome ¢ oxidase, cbb3-type, subunit |

GTTGATCTAGATCAAT

SO4509 fdhA-1 233 (£ 0.56) formate dehydrogenase, alpha subunit

SO4510 fdhB-1 403 (+ 1.57) formate dehydrogenase, iron-sulfur subunit

SO4511 fdhC-1 253 (+ 031) formate dehydrogenase, C subunit, putative

@ The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures with 2 mM KNO; of EtrA7-1 to that of MR-1 (reference).
® The standard deviation was calculated from six data points, which included three independent biological samples and two technical samples for each

biological sample.

€ The arrows indicate that the gene is regulated by the binding site that follows. The direction of the arrow indicates the location of the gene. An arrow pointing
down indicates the gene or operon is in the plus or sense strand and the arrow pointing up indicates the gene or operon is in the minus or anti-sense strand.
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Table 3 Genes repressed in the “Energy metabolism” category in anaerobic cultures of EtrA7-1 grown on lactate and
nitrate relative to the wild type (reference strain)

Gene  Gene Relative Predicted EtrA binding sites® COG Annotation

ID name expression®

SO0274  ppc 048 (+ 0.19) phosphoenolpyruvate carboxylase

SO0398  frdA 030 (+0.16)° fumarate reductase flavoprotein subunit

SO0399 frdB 0.39 (+ 0.06) fumarate reductase iron-sulfur protein

SO0845 napB 5 (+ 0.04) cytochrome c-type protein NapB

SO0846 napH 8 (+0.11) iron-sulfur cluster-binding protein napH

S00847 napG 4 (+ 0.07) iron-sulfur cluster-binding protein NapG

SO0848 napA 8 (£ 0.13) 1 periplasmic nitrate reductase

S00849 napD 0.30 (£ 0.04) GTCGATCGGGATCAAA CGTGATCTAACTCTCA  napD protein

SO0903  ngrB-1 0.34 (£ 0.15) TTTGCTGTAAAGCAAA TGTGCATGGAATCGCC  NADH:ubigquinone oxidoreductase, Na translocating,
hydrophobic membrane protein NgrB

SO0904 ngrC-1 0.28 (+ 0.09) ! NADH:ubiquinone oxidoreductase, Na translocating, gamma
subunit

SO0905 ngrD-1 027 (= 0.14) ! NADH:ubiquinone oxidoreductase, Na translocating,
hydrophobic membrane protein NgrD

SO0906 ngrE-1 0.23 (= 0.07) l NADH:ubiquinone oxidoreductase, Na translocating,
hydrophobic membrane protein NgrE

SO0907 nqrfF-1 0.23 (£ 0.08) NADH:ubiguinone oxidoreductase, Na translocating, beta
subunit

SO0970 fccA 0.31 (£0.17) Periplasmic fumarate reductase, FccA

SO1018 nuok 44 (+ 0.17) NADH dehydrogenase |, E subunit

SO1019 nuoCD 035 (£ 0.13) NADH dehydrogenase |, C/D subunits

SO1020 nuoB 040 (= 0.10) NADH dehydrogenase |, B subunit

SO1363 hep 0.13 (+ 0.08) prismane protein

SO1364  hcr 012 (£ 0.07) iron-sulfur cluster-binding protein

SO1429 dmsA-1 043 (£ 0.09) TGTGATACAATTCAAA anaerobic dimethyl sulfoxide reductase, A subunit

SO1430 dmsB-1 0.29 (= 0.04) l anaerobic dimethyl sulfoxide reductase, B subunit

SO1490 adhB 028 (= 0.12) TGTGATCTAGATCGGT TTGGAACTAGATAACT  alcohol dehydrogenase |l

SO1776 mtrB 0.22 (= 0.04) outer membrane protein precursor MtrB

SO1777 mtrA 0.25 (+ 0.06) decaheme cytochrome ¢ MtrA

SO1778 mtrC 0.30 (£ 0.09) decaheme cytochrome ¢ MtrC

SO1779 omcA 0.30 (£ 0.05) GTGGAATTAGATCCCA TGTGATTGAGATCTGA  decaheme cytochrome ¢

TTTGAGGTAGATAACA

S02097  hyaC 0.07 (+ 0.04) quinone-reactive Ni/Fe hydrogenase, cytochrome b subunit

502098 hyaB 0.11 (£ 0.10) quinone-reactive Ni/Fe hydrogenase, large subunit

S02099 hyaA 0.07 (= 0.11) quinone-reactive Ni/Fe hydrogenase, small subunit precursor

SO2136 adhE 040 (= 0.10) aldehyde-alcohol dehydrogenase

SO2912 pfiB 0.18 (£ 0.11) TTTGAGCTGAAACAAA formate acetyltransferase

SO2913 pflA 0.20 (£ 0.13) pyruvate formate-lyase 1 activating enzyme

SO2915  ackA 0.23 (£0.16) acetate kinase

S02916 pta 0.23 (+ 0.14) phosphate acetyltransferase

SO3144  etfA 0.36 (= 0.13) electron transfer flavoprotein, alpha subunit

SO3285 cydB 1 (x 0.006) T cytochrome d ubiquinol oxidase, subunit Il

SO3286 cydA 022 (£ 0.10) TTTGATTCAAATCAAT cytochrome d ubiquinol oxidase, subunit |

S0O3980 nrfA 8 (+ 0.06) TTTGCGCTAGATCAAA cytochrome ¢552 nitrite reductase

S04513  fdhA-2 0.06 (= 0.02) ACTGTTCTAGATCAAA formate dehydrogenase, alpha subunit

S04515  fdhC-2 0.07 (+ 0.01) formate dehydrogenase, C subunit, putative

SO4591 cymA 039 (£ 0.27) tetraheme cytochrome ¢

@ The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures with 2 mM KNOj3 of EtrA7-1 to that of MR-1 (reference).
PThe standard deviation was calculated from six data points, which included three independent biological samples and two technical samples for each biological

sample.

€ The arrows indicate that the gene is regulated by the binding site that follows. The direction of the arrow indicates the location of the gene. An arrow pointing
down indicates the gene or operon is in the plus or sense strand and the arrow pointing up indicates the gene or operon is in the minus or anti-sense strand.
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was predicted (Table 3). As expected, the cDNA for
etrA, shows no significant hybridization signal in EtrA7-
1 mutant (ratio 0.05).

Stress response caused by the etrA deletion

We detected induction of genes from various categories,
which have been associated with stress response i.e.,
starvation, phage infection and oxidative stress, possibly
due to accumulation of nitrogen oxide reactive species.
Up-regulated genes (Additional file 1) were dominated
by genes grouped in “Other categories”. The majority of
up-regulated genes were phage-related. For example, 25
genes of the LambdaSo phage (S02940-2974), a gene
encoding a viral capsid protein of the MuSol phage
(SO0675), and genes of MuSo2 phage (502684-2685,
S0O2687, SO2702) were up-regulated. In contrast, the
gene encoding the LambdaSo phage transcriptional reg-
ulator of the Cro/CI family (SO2990) was down-regu-
lated (ratio 0.43). Transcriptional changes of most of
these genes are likely indirect effects due to the deletion
of the etrA gene and only for the LambdaSo phage
genes S02957-2962 was an EtrA binding site predicted.

The category “Transport and binding proteins” con-
tains a large number of genes associated with stress
response. Up-regulated genes in this group contain
genes encoding heavy metal efflux pumps (SO0520,
S0O4596-4598, SOA0153) and genes for phosphate trans-
port (SO1560, SO1723-1724 including pstB-1 [SO1725],
pstB-2 [SO4289] and pstA [SO4290]). There was up-reg-
ulation of phoBR (SO1558-59) and phol (SO1726)
genes, which regulate the phosphate transporters genes
during phosphate starvation [28-32].

Up-regulated genes in response to stress conditions
i.e., starvation, phage infection, oxidative stress, include
a stringent starvation protein encoded by the sspAB
genes (SO0611-0612) [33], and a phage shock protein
operon pspABC (SO1807-1809)[34]. Other up-regulated
stress-related genes were the RNA polymerase sigma-70
factor rpoD (SO1284)[32,35], a GTP-binding protein
that regulates the TCA cycle and responds to starvation
(era [SO1349])[36], and a DNA repair protein (recO
[SO1350])[37].

Discussion

The results of this study demonstrate that EtrA positively
regulates dissimilatory nitrate, fumarate and DMSO
reduction pathways in S. oneidensis MR-1. The genera-
tion of etrA knockout mutant EtrA7-1 in the wild type
strain MR-1 background eliminated any possible second-
ary effects on the phenotype, such as the electron transfer
perturbation suspected with the rifampicin resistant
DSP10 strain [6]. Similar to other efrA mutants of strain
MR-1, EtrA7-1 retained its ability to reduce nitrate
[6,7,16]; however, our results show that the anaerobic
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growth of the mutant was significantly impaired com-
pared to the wild type when nitrate was the only electron
acceptor. Likewise, the etrA deletion mutant lost its abil-
ity to reduce fumarate and DMSO with both lactate and
pyruvate as electron donor. Regulation of DMSO reduc-
tion by EtrA in strain MR-1 was suggested previously [6]
however this study provides physiological evidence that
confirm its role. The ability of the EtrA7-1 mutant to
reduce TMAO and thiosulfate also decreased; however
the reduction of Fe(III) citrate, Mn(IV) and sulfite was
not affected by the deletion. No differences in growth
performance between the wild type and the mutant were
observed under aerobic conditions (data not shown).

The transcriptome analysis provides a genome-wide
expression profile of S. oneidensis MR-1 instead of the
partial genome array that was previously evaluated (691
ORFs [6] vs 4,648 genes in this study). We observed in
612 (13%) differentially expressed genes represented
though some are likely due to differences in growth rate
between the mutant strain and the wild type strain.
Nonetheless, the expression patterns of genes are
consistent with the physiological data and with the tran-
scription data reported for Fnr in E. coli [11,12,20] and
with the more limited data by Beliaev et al. [6]. Genes
involved in nitrate reduction (napDAHGB, nrfA, and
hep) were significantly down-regulated by the etrA dele-
tion as well as those encoding the fumarate reduction
(frdAB, fccA) and all the genes encoding for the DMSO
reductases (dmsAB). All of these genes have been con-
sidered candidates for EtrA regulation in previous stu-
dies; however, results were not conclusive [5-7,16].
Sequence analysis of the regulatory regions of the differ-
entially expressed genes, indicated possible EtrA recog-
nition sites for most genes in the “Energy metabolism”
category, some of which i.e. napDAHGB, nrfA, frdAB
and dmsAB, confirms previous results [6] and further
suggests that regulation of these genes is via direct
interaction of EtrA with their promoters. Putative recog-
nition sites for EtrA were also identified for the two ngr
gene clusters, which had not been identified previously.
Also, the regulatory regions for fdh gene clusters were
evaluated and an EtrA binding site was recognized for
only fdhA-1. The fdh-2 cluster does not possess an EtrA
binding site, suggesting a different regulatory system.

Our data indicate that EtrA is a global regulator acting
in cooperation with other regulatory proteins to control
anaerobic metabolic processes in strain MR-1 [6,7,16],
therefore, the expression of these genes cannot be
expected to be under an “all or none” regulatory
mechanism. Rather, these global regulators respond to
multiple stimuli (e.g., oxygen levels, substrates) and fine-
tune regulation via transcriptional control and interac-
tions between regulatory proteins. Studies in S. oneiden-
sis and in other Shewanella species that indicate the
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combined action of transcriptional regulators for the
anaerobic metabolism in this organism [4,17-19]. For
example, recent studies showed that CRP, EtrA and the
product of the cya genes act as expression regulators of
several anaerobic respiratory systems, including nitrate
reduction in S. oneidensis MR-1 and Shewanella sp.
strain ANA-3 [4,17-19]. In E. coli, Fnr and NarP posi-
tively regulate the nap and nrf genes [12,20,38,39]. MR-
1 possesses the genes for a homolog of the two-compo-
nent regulatory system in E. coli NarQ/NarP (SO3981-
3982). The presence of alternate regulators that partially
fulfill the function of EtrA can explain why nitrate
reduction even though impaired, still occurred in the
EtrA7-1 knockout mutant.

Down-regulation of genes for lactate transport was
also observed. Since lactate was the source of reducing
equivalents and carbon, a lack of electron donor and
carbon may have contributed to the impaired growth of
the EtrA7-1 mutant. Induction of transport proteins for
carbon sources and electron acceptors has also been
credited to Fnr in E. coli [12,20], and a putative EtrA
binding site was predicted for the gene encoding a lac-
tate permease (SO0827) in MR-1.

Impaired growth of EtrA7-1 could also be due to
stress factors caused or enhanced by the deletion (e.g.
accumulation of nitrogen oxide reactive species and
starvation). The expression of phage-related genes
induced in response to irradiation in strain MR-1 has
been reported [40]. Up-regulation of the genes involved
in activation of the strain MR-1 prophages LambdaSo,
MuSol and MuSo2 in the EtrA7-1 mutant was
observed, suggesting phage activity. Induction of bacter-
ial genes (e.g., nusAG) required to stabilize the Lambda
protein antitermination complex in E. coli was also
shown [41,42]. Conversely, there is repression of the
LambdaSo transcription regulator Cro/CI family, which
represses the transcription of the Lambda genes in
E. coli [43]. Also, the induction of genes associated with
starvation, i.e., a condition that could activate the lytic
cycle of prophages [43], was confirmed in the expression
analysis.

Conclusion

The involvement of several regulatory controls has com-
plicated the interpretation of gene expression patterns
and functions in Shewanella spp. Results from the above
etrA deletion mutant studies suggest a global regulatory
role for EtrA, but one which works in conjunction with
other regulators to fine-tune the expression of key genes
in anaerobic metabolic pathways in S. oneidensis strain
MR-1. Besides confirming and clarifying previous
reports on Fnr regulation, we also provide experimental
evidence for a positive regulatory role of EtrA in the
DMSO reduction pathway of strain MR-1. Furthermore,
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our whole-genome transcriptional profile shows the
effects of EtrA on the expression of genes not previously
evaluated (e.g. nqr, fdh-1, phage- and stress-related
genes), and differences in the expression pattern of
genes previously analyzed (e.g. cydAB and sdhC)[6,12].
These observations are consistent with results obtained
by Gralnick et al. [4] suggesting a distinctive regulatory
system, although very similar to Fnr in E. coli. A strin-
gent sequence analysis of the regulatory region of the
genes affected by the mutation suggest direct interaction
of EtrA to those in the “Energy metabolism” category,
while stress- and phage-related genes are up-regulated
indirectly as a consequence of a secondary perturbation.
This and previous work taken together suggest that this
regulator is more properly termed Fnr.

Methods

Bacterial strains and culture conditions

The bacterial strains, plasmids, primers and, probes used
in this study are described in Table 4. S. oneidensis strain
MR-1 and its mutant strains were grown in HEPES med-
ium as described [44]. The medium was supplemented
with 20 mM lactate and KNO3 was added as electron
acceptor in concentrations specified below. Oxygen was
removed from the medium by boiling and purging with
helium [45]. Cultures of E. coli strain $2155 (auxotroph
of diaminopimelic acid [DAP]) were grown in Luria-
Bertani (LB) medium supplemented with 100 pg/ml of
DAP at 37°C. S. oneidensis strain MR-1 was cultivated in
aerobic LB medium at 30°C during the mutagenesis pro-
cess. Antibiotics used for the selection of MR-1 transfor-
mants were added in the following concentrations: 25
pg/ml of kanamycin, 7.5 pg/ml of gentamycin, and 10
pg/ml of tetracycline. Vessels that received no inoculum
or no KNOj served as negative controls.

Construction of a chromosomal AetrA::loxP allele

PCR primers were designed with Vector NTI® software
(InforMax, Inc., Frederick, MD) and synthesized at Inte-
grated DNA Technologies (http://www.idtdna.com).

A deletion mutant of the etrA gene (SO2356) was
constructed by allelic replacement as described [44]. Pri-
mers etrAN Rev (Sacl) and etrAN Fwd (Sacll) generated
a 520 bp fragment containing about two-thirds of the
upstream SO2357 gene, the SO2357-etrA intergenic
region, and the first four base pairs of the 753-bp etrA
gene (Table 4). Primers etrAC Rev (Ndell) and etrAC
Fwd (EcoRI) generated a 526 bp fragment containing
the last five base pairs of the etrA gene, the etrA-
S0O2355 intergenic region and about half of the down-
stream SO2355 gene (Table 4). The resulting ‘SO2357-
etrA’-loxP-kan-loxP-"etrA-S0O2355” assembly was cloned
into the conditionally-replicating plasmid pKNOCK-Gm
(Table 4), which encodes resistance to gentamycin, to
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generate plasmid pCCGO2. S. oneidensis MR-1 Km" Gm®
colonies were screened by PCR using primers etrAS-
creenout Fwd and etrAScreenout Rev (Table 4) to iden-
tify recombinants in which the etrA gene was replaced
by the loxP-kan-loxP cassette.

The kan gene was subsequently removed from the
mutant MR-1 genome by Cre recombination [44,46].
PCR and DNA sequence analyses confirmed the pre-
sence of the chromosomal AetrA::loxP allele. DNA
sequencing was performed at the Genomics Technical
Support Facility at Michigan State University.

AetrA::loxP mutant complementation

Plasmid pCM62 (Table 4) was used as the vector for the
expression of the etrA gene in a AetrA::loxP mutant
(strain EtrA7-1). The etrA gene (SO2356) was PCR
amplified from S. oneidensis MR-1 genomic DNA using
the etrAcomp Fwd (BamHI) and etrAcomp Rev (EcoRI)
(Table 4). The amplicon was double digested with
BamHI and EcoRI and ligated to the multiple cloning
site in pCM62. This construct (pCCGO03) was trans-
formed into EtrA7-1 by conjugation from E. coli f2155.
Ligation, electroporation into E. coli f2155, and conju-
gation in strain EtrA7-1 were performed as described
[44]. Plasmid pCM62 was also transformed into EtrA7-1
via conjugation from E. coli $2155 and used as a control
for any plasmid effects. Transformants were selected by
streaking on LB plates with tetracycline. EtrA7-1 Tc"
colonies were diagnosed by PCR using the etrAcomp
primers (Table 4) and subsequently sequenced to verify
the deletion of the etrA gene.

Phenotypic characterization of the AetrA::loxP mutant
Cultures of the wild type, EtrA7-1, EtrA7-1 complement
and EtrA7-1 harboring pCM62 were grown anaerobi-
cally with 3 mM KNOj; in HEPES medium. Growth was
monitored periodically by OD measurements at 600 nm.
Samples (2 mL) were periodically withdrawn for analysis
of nitrate, nitrite and ammonium concentrations as
described [44,47].

Cultures of the wild type and EtrA7-1 were also culti-
vated anaerobically with ferric citrate (10 mM), fumarate
(10 mM), disodium thiosulfate (10 mM), trimethylamine
N-oxide (TMAO; 10 mM), manganese dioxide (1 mM,
nominal concentration), dimethyl sulfoxide (DMSO; 2
and 10 mM) and disodium sulfite (1 mM), as electron
acceptors. The ferric citrate and the manganese dioxide
were prepared as described [48]. Evidence of growth via
reduction of TMAO, thiosulfate and fumarate was
determined by ODgo9 measurements. Fe(IlI) reduction
was determined by the ferrozine assay following HCl
extraction [49,50]. Mn(IV) reduction was assayed colori-
metrically [48]. Cultures supplied with DMSO as the
terminal electron acceptor were analyzed by high-
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performance liquid chromatography (HPLC) for lactate
consumption and acetate formation [51]. Sulfite con-
sumption was measured using a DX-100 ion chromato-
graph (Dionex Corp., Sunnyvale, CA) equipped with an
IonPac AS14A Column.

To determine the effects of lactate on the reduction of
DMSO, nitrate and fumarate, cultures of the wild type
and the EtrA7-1 mutant strain were grown anaerobically
with 20 mM sodium pyruvate as the electron donor and
dimethyl sulfoxide (DMSO; 1 mM), fumarate (10 mM)
or nitrate (2 mM) as electron acceptors. DMSO and
fumarate reduction were monitored as mentioned
above. Nitrate reduction was measured using a Dionex
ICS-3000 ion chromatograph (Dionex Corp., Sunnyvale,
CA) equipped with an IonPac AS14 Column.

Resting cell assays

Cells of the wild type strain MR-1 and the EtrA7-1
mutant were grown aerobically in HEPES medium with
20 mM lactate as the electron donor to ODggy = 0.2.
Cells were harvested by centrifuging for 10 min at 3,000
g, washed twice with 50 mM saline phosphate buffer
(pH 7.0) [52,53], and resuspended in the same buffer to
an ODgyo = 1.0 under anoxic conditions. The cells were
incubated with 5 mM KNOs, and after 0, 1, 2, 4, 8 and
24 h were removed by centrifugation and three 1-mL
replicate samples of the supernatant were assayed to
determine nitrate and nitrite reduction rates. Assays
with autoclaved wild type cells served as negative con-
trols. Nitrate, nitrite and ammonium concentrations
were determined as described [44].

Total RNA preparations

Total RNA was extracted from triplicate cultures of
strains MR-1 and EtrA7-1 grown with 2 mM nitrate as
the sole electron acceptor. The RNA was extracted with
RNAwiz Solution following the instructions of the manu-
facturer (Ambion, Inc., Austin, TX). RNA samples were
treated with RNase-free DNasel (Roche Pharmaceuticals,
Basel, Switzerland) and purified by phenol:chloroform
(1:1) and chloroform extractions [54], and stored in etha-
nol at -80°C until use. Quality of the RNA was verified
using the RNA 6000 Pico LabChip kit and the 2100 Bioa-
nalyzer (Agilent Technologies, Inc., Santa Clara, CA).

Global expression analyses

A S. oneidensis strain MR-1 whole genome microarrays
[55] were provided by Liyou Wu and Jizhong Zhou
(Oak Ridge National Laboratory, Oak Ridge, TN). cDNA
preparation and labeling were performed as described
[56] using a 2:3 ratio of 5-(3-aminoallyl)-dUTP and
dTTP. Hybridization and post-hybridization washes
were done as described [57]. Three biological replicates
per treatment were used for the hybridization of six
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Table 4 Bacterial strains, plasmids, primers and oligonucleotides used in this study

Strain/plasmid/primer/Probe Relevant genotype or sequence®® Source
Escherichia coli K-12

2155 DAP auxotroph [61]
Shewanella oneidensis

MR-1 (ATCC 700550") wild type (62]

EtrA7-1 As MR-1 but AetrA:loxP This study

EtrA7-1 complement EtrA7-1 complemented with the etrA gene (502356) cloned into This study

pCM62

EtrA7-1 with pCM62 EtrA7-1 harboring the pCM62 as a negative control for complementation This study
Plasmids

pCM62 T tral trfA oriT oriV [63]

pCM157 Tc; trfA oriT oriV ColE1 ori; lacZp-cre [46]

pCM184 Ap" Tc'; loxP-kan-loxP [46]

pKNOCK-Gm Gm"; origex OfiTgpa [64]

pCCG02 As pKNOCK-Gm but etrA*-loxP-kan-loxP-'etrA This study

pCCG03 As pCM62 but lacZp-etrA This study
Primers®

etrAN Fwd GCCGCGGTCATGTCGGTTCTCAAGT

etrAN Rev CGAGCTCCGACAGCTATCTGTTAGTCT

etrAC Fwd CGAATTCAAATCACCGCTTTTAACTTG

etrAC Rev GCATATGCCAGATAAATCACACCTTTT

etrAScreenout AATTCTTCAGGCATTTGACTCG

Fwd

etrAScreenout GGCCGTATCTTGAGTTATACCC

Rev

etrAcomp Fwd
etrAcomp Rev

GGATCCAGGTGTGATTTATCTGGCG
GAATTCCCGACATGACAATAGAGCAGA

23SRT Fwd TAGCGAAATTCCTTGTCGGG
23SRT Rev GAGACAGCGTGGCCATCATT
23Stemp Rev GTATCAGTTAGCTCAACGCCTC
napART Fwd AGAAAGCCCTGTTAACCGTGG
napART Rev TCATCCGCAGCAATGGTGT
napAtemp Rev GATCGAAGCTACGGTTCTCG
nrfART Fwd GCCACATGTATGCCGTGACT
nrfART Rev TTTACAGCTCCAGCAAGCCA
nrfAtemp Rev ACGTTTCATACTCGGGATGC

Probes
23SRTProbe AGTTCCGACCTGCACGAATGGCG
napARTProbe CTGTATTAAAGGTTACTTCCTGTCGAAAATCATGTACGG
nrfARTProbe CGTAATACCTTGCGTACTGGCGCGC

@ The sequence for the primers is written from the 5’end to the 3’end.
b Primers were designed using putative gene sequences of S. oneidensis MR-1.

© For primer sequences, the restriction sites incorporated are underlined. CATATG, Ndel; GAATTC, EcoRl; GAGCTC, Sacl; CCGCGG, Sacll.

microarray slides including technical duplicates (dye-
swap). Data analysis was performed using the Gene-
Spring 6.0 software (Silicon Genetics, Redwood City,
CA). The data were normalized per chip and per gene
(Lowess Normalization) and the spots with less than
55% pixel intensity above background plus two standard
deviations were eliminated from the analyses [58]. The
data were filtered using the Benjamini and Hochberg

false discovery rate with 95% confidence and only those
genes with a > 2-fold change in expression were consid-
ered significant.

Microarray data accession number

The raw microarray intensity data has been deposited in
the GenBank Gene Expression Omnibus (GEO) database
under the accession number GSE26935.
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Identification of putative EtrA binding sites

Regulatory motifs were predicted in the intergenic
regions of differentially expressed genes using the Gibbs
centroid sampler [59]. Intergenic regions were extracted,
based on the S. oneidensis MR-1 genome annotation,
that were at least 50 bp in length and upstream of dif-
ferentially expressed genes or operons whose change in
expression (average * one standard deviation) was at
least 2.5-fold. A total of 170 genes met these require-
ments: 55 had expression levels minus one standard
deviation of > 2.5 (up-regulated genes) and 115 had
expression levels plus one standard deviation of < 0.4
(down-regulated genes). For these genes, 118 upstream
intergenic regions were extracted for analysis, after
accounting for multiple genes within an operon. The
parameters for the Gibbs centroid sampler used on
these sequences were the following: up to two motif
models were allowed, where each model was specified
to be palindromic and 16-24 bases long, a maximum of
three sites per intergenic was allowed, a position-specific
background model [60] was employed, and centroid
sampling was performed with 1000 burn-in iterations,
5000 sampling iterations and 10 random seeds. The
results from four independent runs were compared, and
the subset of 47 intergenic regions extracted that con-
tained a predicted regulatory motif in at least one of
those runs. These 47 intergenic sequences were analyzed
with the Gibbs centroid sampler, using the same para-
meters as above, except that only one motif model was
specified. Additional binding sites were detected using
dscan (http://ccmbweb.ccv.brown.edu/cgi-bin/dscan.pl)
to search the set of promoters for all the genes that
exhibited > 2-fold change in expression (Additional file
1). This set included a total of 424 intergenic regions.

Additional material

Additional file 1: Supplemental Table SI1. Genes differentially
expressed in anaerobic cultures of MR-1 and Etra7-1 at different
concentrations of KNO3. Complete list of genes differentially expressed
including relative expression, standard deviation, “TIGR role” and
predicted EtrA binding sites.

Additional file 2: Figure SI1. Distribution of differentially expressed
genes (> 2-fold change) grouped in 19 functional categories in
anaerobic cultures of EtrA7-1 compared to the wild type grown on
lactate and nitrate. The total of genes down-regulated is 323 and the
up-regulated is 289. Each bar represents the number of up-regulated
(white) and down-regulated (black) genes for each functional category.
Abreviations: [PS], Protein synthesis; [DM], DNA Metabolism; [RF],
Regulatory Function; [CIM], Central Intermediary Metabolism; [EM], Energy
Metabolism; [OC], Other Categories; [UF], Unknown Function; [TBP],
Transport Binding Proteins; [PF], Protein Fate; [HP], Hypothetical Protein;
[AAB], Amino Acid Biosynthesis; [FAPM], Fatty Acid and Phospholipid
Metabolism; [DRF], Disrupted Reading Frame; [CP], Cellular Processes;
[BCPGC], Biosynthesis of Cofactors, Prosthetic Groups, and Carriers; [CE],
Cell Envelope; [ST], Signal Transduction; [T], Transcription; and [PPNN],
Purines, Pyrimidines, Nucleosides and Nucleotides.

Page 12 of 14

Additional file 3: Figure SI2. Sequence logo (http://weblogo.
berkeley.edu/logo.cgi) of the identified EtrA binding site motif for
S. oneidensis MR-1. The logo represents the palindromic model of the
aligned sites, showing the relative frequency of each base at each
position of the motif. The Y-axis indicates the information content
measured in bits. All of the predicted sites that contribute to the model
are in Table SI1 in the supplementary materials.
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