10 research outputs found

    Mesoscale observations of Joule heating near an auroral arc and ion-neutral collision frequency in the polar cap E region

    Get PDF
    We report on the first mesoscale combined ionospheric and thermospheric observations, partly in the vicinity of an auroral arc, from Svalbard in the polar cap on 2 February 2010. The EISCAT Svalbard radar employed a novel scanning mode in order to obtain F and E region ion flows over an annular region centered on the radar. Simultaneously, a colocated Scanning Doppler Imager observed the E region neutral winds and temperatures around 110 km altitude using the 557.7 nm auroral optical emission. Combining the ion and neutral data permits the E region Joule heating to be estimated with an azimuthal spatial resolution of ∼64 km at a radius of ∼163 km from the radar. The spatial distribution of Joule heating shows significant mesoscale variation. The ion-neutral collision frequency is measured in the E region by combining all the data over the entire field of view with only weak aurora present. The estimated ion-neutral collision frequency at ∼113 km altitude is in good agreement with the MSIS atmospheric model

    A statistical survey of electron temperature enhancements in heater modulated polar mesospheric summer echoes at EISCAT

    No full text
    A statistical analysis has been made of 26 Polar Mesospheric Summer Echoes (PMSE) active modulation experiments between 2002 and 2007. Observed with the EISCAT VHF radar the PMSE signature can be reduced by means of heating the ionosphere with powerful high frequency (HF) radio waves. However, PMSE modulation experiments sometimes fail. We use a computational model to estimate the enhanced electron temperatures due to ionospheric heating from HF radio waves in the D-region. We show that the statistical PMSE modulation for a fixed HF heater-induced electron temperature enhancement appears to be independent of altitude. In addition, for experiments where the PMSE modulation experiment failed, we show that the atmospheric attenuation of the HF heater wave was too great for the HF wave to have any effect on the PMSE layer

    Worldwide atmospheric gravity-wave study in the European sector 1985–1990

    No full text
    Four campaigns of the Worldwide Atmospheric Gravity-wave Study (WAGS) have taken place in the European sector. On many occasions the onset of auroral activity in the evening and midnight sector, as indicated by EISCAT measurements of the electric field, was associated after a suitable delay with the detection of periodic ionospheric disturbance travelling southward over the U.K. at speeds between 500 and 1000 m s−1. The velocity and wavelength of the TIDs corresponded to large-scale atmospheric gravity-waves. The characteristic periods of the travelling disturbances were similar to the intrinsic time scales of the auroral activity for periods of 40 min or more, but variations on a time scale of 20 min or less were strongly attenuated. The r.m.s. amplitude of the auroral electric field was proportional to the r.m.s. amplitude of the HF Doppler-shift associated with the gravity-wave. The time-lag between the onset of strong auroral activity and the arrival of the travelling disturbance over the U.K. was usually about an hour, suggesting a source region about 2000 km north. Similar levels of activity in the afternoon did not appear to produce strong waves in the far field. This is possibly due to ion-drag in the daytime ionosphere although the effects of the lower sensitivity of the HF Doppler-network during daytime must also be considered

    Ohmic heating as evidence for strong field-aligned currents in filamentary aurora

    No full text
    A large increase in electron temperature measured in filamentary aurora with the European incoherent scatter radar has been modeled with a one-dimensional electron transport and ion chemistry code. To account for the observed changes in electron temperature, while also reproducing the measured E region electron density profiles, a source of electron heating is required in addition to local heating from energy degradation of the precipitating electrons. We show that ohmic heating in a strong field-aligned current can account for the required heat source.<br/

    Coordinated cluster and ground-based instrument observations of transient changes in the magnetopause boundary layer during an interval of predominantly northward in the magnetopause boundary layer during an interval of predominantly northward IMF: relation to the reconnection pulses and FTE signatures

    No full text
    We study a series of transient entries into the low-latitude boundary layer (LLBL) of all four Cluster craft during an outbound pass through the midafternoon magnetopause ([XGSM, YGSM, ZGSM] ≈ [2, 7, 9] RE). The events take place during an interval of northward IMF, as seen in data from the ACE satelliteand lagged by a propagation delay of 75 min that is well defined by two separate studies: (1) of the magnetospheric variations prior to the northward turning (Lockwood et al., 2001, this issue) and (2) of the field clock angle seen by Cluster after it had emerged into the magnetosheath (Opgenoorth et al., 2001, thisissue). With an additional lag of 16.5 min, the transient LLBL events correlate well with swings of the IMF clock angle (in GSM) to near 90°. Most of this additional lag is explained by ground-based observations, which reveal signatures of transient reconnection in the pre-noon sector that then take 10-15min to propagate eastward to 15 MLT, where they are observed by Cluster. The eastward phase speed of these signatures agrees very well with the motion deduced by cross-correlation of the signatures seen on the four Cluster craft.The evidence that these events are reconnection pulses includes: transienterosion of the noon 630 nm (cusp/cleft) aurora to lower latitudes; transient and travelling enhancements of the flow into the polar cap, imaged by the AMIE technique; and poleward-moving events moving into the polar cap, seen by the EISCAT Svalbard Radar (ESR). A pass of the DMSP-F15 satellite reveals that the open field lines near noon have been opened for some time: the more recently opened field lines were found nearer dusk where the flow transient and the poleward-moving event intersected the satellite pass. The events at Clusterhave ion and electron characteristics predicted and observed by Lockwood and Hapgood (1998) for a Flux Transfer Events (FTE), with allowance for magnetospheric ion reflection off Alfvénic disturbances in the magnetopause reconnection layer. Like FTEs, the events are about 1RE in their direction of motion and show a rise in the magnetic field strength but, unlike FTEs, in general they show no pressure excess in their core and hence no characteristic bipolar signature in the boundary-normal component. However, most of the events were3 observed where the magnetic field was southward, i.e. on the edge of the interior magnetic cusp, or when the field was parallel to the magnetic equatorial plane. Only when the satellite begins to emerge into the exterior boundary (where the field was northward), do the events start to show a pressure excess in their core and the consequent bipolar signature. We identify the events as the first observations of flux transfer events at middle altitudes

    Gravitation and general relativity at King’s College London

    No full text
    corecore