32 research outputs found

    Spatial heterogeneity of epibenthos on artificial reefs: Fouling communities in the early stages of colonization on an East Australian shipwreck

    No full text
    Artificial reefs are spatially complex habitats and serve as good model systems to study patterns of community succession and the response of epibiota to environmental clines over small spatial scales. Here, we quantified spatial heterogeneity in community composition and diversity of fouling communities across a number of environmental gradients that included water depth, surface orientation of habitats, exposure to currents, and shelter. Assemblage structure was quantified by spatially replicated photo transects on a recently scuttled large navy ship off the East Australian coast, lying in 27 m of water. A rich assemblage of epifauna had colonized the wreck within a year, dominated by barnacles, sponges and bryozoans. Community structure varied significantly over small spatial scales of meters to tens of meters. Depth, surface orientation and exposure were the major environmental drivers. Assemblages were substantially less diverse and abundant on the deepest (23 m near the seafloor) part of the hull with residual antifouling paint, on sheltered surfaces inside the wreck, and on the sediment-laden horizontal surfaces. Overall, the wrecks’ habitat complexity corresponds with small-scale heterogeneity in the fouling communities. This study supports the notion that wrecks enhance local diversity and biomass within the habitat mosaic of their location, and habitat complexity may be an important mechanism for this, as demonstrated by the large spatial variability in the assemblages documented here

    Equitable rationing of highly specialised health care services for children: a perspective from South Africa.

    Get PDF
    The principles of equality and equity, respectively in the Bill of Rights and the white paper on health, provide the moral and legal foundations for future health care for children in South Africa. However, given extreme health care need and scarce resources, the government faces formidable obstacles if it hopes to achieve a just allocation of public health care resources, especially among children in need of highly specialised health care. In this regard, there is a dearth of moral analysis which is practically useful in the South African situation. We offer a set of moral considerations to guide the macro-allocation of highly specialised public health care services among South Africa's children. We also mention moral considerations which should inform micro-allocation

    Spectral characterisation of analog samples in anticipation of OSIRS-REx's arrival at Bennu: A blind test study

    No full text
    We present spectral measurements of a suite of mineral mixtures and meteorites that are possible analogs for asteroid (101955) Bennu, the target asteroid for NASA's Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) mission. The sample suite, which includes anhydrous and hydrated mineral mixtures and a suite of chondritic meteorites (CM, CI, CV, CR, and L5), was chosen to characterize the spectral effects due to varying amounts of aqueous alteration and minor amounts of organic material. Our results demonstrate the utility of mineral mixtures for understanding the mixing behavior of meteoritic materials and identifying spectrally dominant species across the visible to near-infrared (VNIR) and thermal infrared (TIR) spectral ranges. Our measurements demonstrate that, even with subtle signatures in the spectra of chondritic meteorites, we can identify diagnostic features related to the minerals comprising each of the samples. Also, the complementary nature of the two spectral ranges regarding their ability to detect different mixture and meteorite components can be used to characterize analog sample compositions better. However, we observe differences in the VNIR and TIR spectra between the mineral mixtures and the meteorites. These differences likely result from (1) differences in the types and physical disposition of constituents in the mixtures versus in meteorites, (2) missing phases observed in meteorites that we did not add to the mixtures, and (3) albedo differences among the samples. In addition to the initial characterization of the analog samples, we will use these spectral measurements to test phase detection and abundance determination algorithms in anticipation of mapping Bennu's surface properties and selecting a sampling site
    corecore