8,646 research outputs found

    Investigation of nickel hydrogen battery technology for the RADARSAT spacecraft

    Get PDF
    The low Earth orbit (LEO) operations of the RADARSAT spacecraft require high performance batteries to provide energy to the payload and platform during eclipse period. Nickel Hydrogen cells are currently competing with the more traditional Nickel Cadmium cells for high performance spacecraft applications at geostationary Earth orbit (GEO) and Leo. Nickel Hydrogen cells appear better suited for high power applications where high currents and high Depths of Discharge are required. Although a number of GEO missions have flown with Nickel Hydrogen batteries, it is not readily apparent that the LEO version of the Nickel Hydrogen cell is able to withstand the extended cycle lifetime (5 years) of the RADARSAT mission. The problems associated with Nickel Hydrogen cells are discussed in the contex of RADARSAT mission and a test program designed to characterize cell performance is presented

    Grade Retention and School Performance: An Extended Investigation

    Get PDF
    This study extends Reynolds’ (1992) investigation of the social- psychological influences on grade retention and school adjustment in early childhood by tracing the predictors and consequences of grade retention for school achievement, perceived competence, and delinquency in early adolescence (age 14). The study sample included 1,164 (93 percent of the sample from the original study) low-income, mostly black children in the Chicago Longitudinal Study. Twenty-eight percent of the study sample were retained-in-grade by age 14 (first grade to eighth grade). The strongest predictors of retention were early school performance (test scores and grades), sex (boys were more likely to be retained), parent participation in school, and school mobility. Overall, grade retention was significantly associated with lower reading and math achievement at age 14 above and beyond a comprehensive set of explanatory variables. Results based on same-age comparison groups yielded larger effects of retention on school achievement than those based on same-grade comparisons, but both approaches indicated that grade retention was associated with significantly lower reading achievement. In the full model, grade retention was unrelated to perceived school competence at age 12 and to delinquency infractions at age 14. With the exception of reading achievement, retention during the primary grades and retention during grades 4 to 7 yielded a similar pattern of effects. Findings were largely consistent with the earlier study and suggest that intervention approaches other than grade retention are needed to better promote school achievement and adjustment.

    Finite Temperature and Dynamical Properties of the Random Transverse-Field Ising Spin Chain

    Full text link
    We study numerically the paramagnetic phase of the spin-1/2 random transverse-field Ising chain, using a mapping to non-interacting fermions. We extend our earlier work, Phys. Rev. 53, 8486 (1996), to finite temperatures and to dynamical properties. Our results are consistent with the idea that there are ``Griffiths-McCoy'' singularities in the paramagnetic phase described by a continuously varying exponent z(δ)z(\delta), where δ\delta measures the deviation from criticality. There are some discrepancies between the values of z(δ)z(\delta) obtained from different quantities, but this may be due to corrections to scaling. The average on-site time dependent correlation function decays with a power law in the paramagnetic phase, namely τ−1/z(δ)\tau^{-1/z(\delta)}, where τ\tau is imaginary time. However, the typical value decays with a stretched exponential behavior, exp⁡(−cτ1/μ)\exp(-c\tau^{1/\mu}), where μ\mu may be related to z(δ)z(\delta). We also obtain results for the full probability distribution of time dependent correlation functions at different points in the paramagnetic phase.Comment: 10 pages, 14 postscript files included. The discussion of the typical time dependent correlation function has been greatly expanded. Other papers of APY are available on-line at http://schubert.ucsc.edu/pete

    Painleve versus Fuchs

    Full text link
    The sigma form of the Painlev{\'e} VI equation contains four arbitrary parameters and generically the solutions can be said to be genuinely ``nonlinear'' because they do not satisfy linear differential equations of finite order. However, when there are certain restrictions on the four parameters there exist one parameter families of solutions which do satisfy (Fuchsian) differential equations of finite order. We here study this phenomena of Fuchsian solutions to the Painlev{\'e} equation with a focus on the particular PVI equation which is satisfied by the diagonal correlation function C(N,N) of the Ising model. We obtain Fuchsian equations of order N+1N+1 for C(N,N) and show that the equation for C(N,N) is equivalent to the NthN^{th} symmetric power of the equation for the elliptic integral EE. We show that these Fuchsian equations correspond to rational algebraic curves with an additional Riccati structure and we show that the Malmquist Hamiltonian p,qp,q variables are rational functions in complete elliptic integrals. Fuchsian equations for off diagonal correlations C(N,M)C(N,M) are given which extend our considerations to discrete generalizations of Painlev{\'e}.Comment: 18 pages, Dedicated to the centenary of the publication of the Painleve VI equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard Fuchs in 190

    Randomly incomplete spectra and intermediate statistics

    Full text link
    By randomly removing a fraction of levels from a given spectrum a model is constructed that describes a crossover from this spectrum to a Poisson spectrum. The formalism is applied to the transitions towards Poisson from random matrix theory (RMT) spectra and picket fence spectra. It is shown that the Fredholm determinant formalism of RMT extends naturally to describe incomplete RMT spectra.Comment: 9 pages, 2 figures. To appear in Physical Review

    Zero--Temperature Quantum Phase Transition of a Two--Dimensional Ising Spin--Glass

    Full text link
    We study the quantum transition at T=0T=0 in the spin-12\frac12 Ising spin--glass in a transverse field in two dimensions. The world line path integral representation of this model corresponds to an effective classical system in (2+1) dimensions, which we study by Monte Carlo simulations. Values of the critical exponents are estimated by a finite-size scaling analysis. We find that the dynamical exponent, zz, and the correlation length exponent, ν\nu, are given by z=1.5¹0.05z = 1.5 \pm 0.05 and ν=1.0¹0.1\nu = 1.0 \pm 0.1. Both the linear and non-linear susceptibility are found to diverge at the critical point.Comment: RevTeX 10 pages + 4 figures (appended as uuencoded, compressed tar-file), THP21-9
    • …
    corecore