133 research outputs found

    New horizons for plant translational research

    Get PDF
    In this issue, we launch a new article collection "The Promise of Plant Translational Research," featuring articles from leading plant researchers and call for additional plant translational research to be submitted to PLOS Biology for inclusion in this collection. We also discuss in this Editorial why this field has a vital role to play in meeting the challenges of sustainably feeding a growing world population

    Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extensive DNA rearrangement of genic colinearity, as revealed by comparison of orthologous genomic regions, has been shown to be a general concept describing evolutionary dynamics of plant genomes. However, the nature, timing, lineages and adaptation of local genomic rearrangement in closely related species (<it>e.g</it>., within a genus) and haplotype variation of genomic rearrangement within populations have not been well documented.</p> <p>Results</p> <p>We previously identified a hotspot for genic rearrangement and transposon accumulation in the <it>Orp </it>region of Asian rice (<it>Oryza sativa</it>, AA) by comparison with its orthologous region in sorghum. Here, we report the comparative analysis of this region with its orthologous regions in the wild progenitor species (<it>O. nivara</it>, AA) of Asian rice and African rice (<it>O. glaberrima</it>) using the BB genome <it>Oryza </it>species (<it>O. punctata</it>) as an outgroup, and investigation of transposon insertion sites and a segmental inversion event in the AA genomes at the population level. We found that <it>Orp </it>region was primarily and recently expanded in the Asian rice species <it>O. sativa </it>and <it>O. nivara</it>. LTR-retrotransposons shared by the three AA-genomic regions have been fixed in all the 94 varieties that represent different populations of the AA-genome species/subspecies, indicating their adaptive role in genome differentiation. However, LTR-retrotransposons unique to either <it>O. nivara </it>or <it>O. sativa </it>regions exhibited dramatic haplotype variation regarding their presence or absence between or within populations/subpopulations.</p> <p>Conclusions</p> <p>The LTR-retrotransposon insertion hotspot in the <it>Orp </it>region was formed recently, independently and concurrently in different AA-genome species, and that the genic rearrangements detected in different species appear to be differentially triggered by transposable elements. This region is located near the end of the short arm of chromosome 8 and contains a high proportion of LTR-retrotransposons similar to observed in the centromeric region of this same chromosome, and thus may represent a genomic region that has recently switched from euchromatic to heterochromatic states. The haplotype variation of LTR-retrotransposon insertions within this region reveals substantial admixture among various subpopulations as established by molecular markers at the whole genome level, and can be used to develop retrotransposon junction markers for simple and rapid classification of <it>O. sativa </it>germplasm.</p

    Global Dissemination of a Single Mutation Conferring White Pericarp in Rice

    Get PDF
    Here we report that the change from the red seeds of wild rice to the white seeds of cultivated rice (Oryza sativa) resulted from the strong selective sweep of a single mutation, a frame-shift deletion within the Rc gene that is found in 97.9% of white rice varieties today. A second mutation, also within Rc, is present in less than 3% of white accessions surveyed. Haplotype analysis revealed that the predominant mutation originated in the japonica subspecies and crossed both geographic and sterility barriers to move into the indica subspecies. A little less than one Mb of japonica DNA hitchhiked with the rc allele into most indica varieties, suggesting that other linked domestication alleles may have been transferred from japonica to indica along with white pericarp color. Our finding provides evidence of active cultural exchange among ancient farmers over the course of rice domestication coupled with very strong, positive selection for a single white allele in both subspecies of O. sativa

    Association mapping and genetic dissection of drought-induced canopy temperature differences in rice

    Get PDF
    Drought-stressed plants display reduced stomatal conductance, which results in increased leaf temperature by limiting transpiration. In this study, thermal imaging was used to quantify the differences in canopy temperature under drought in a rice diversity panel consisting of 293 indica accessions. The population was grown under paddy field conditions and drought stress was imposed for 2 weeks at flowering. The canopy temperature of the accessions during stress negatively correlated with grain yield (r= ā€“0.48) and positively with plant height (r=0.56). Temperature values were used to perform a genome-wide association (GWA) analysis using a 45K single nucleotide polynmorphism (SNP) map. A quantitative trait locus (QTL) for canopy temperature under drought was detected on chromosome 3 and fine-mapped using a high-density imputed SNP map. The candidate genes underlying the QTL point towards differences in the regulation of guard cell solute intake for stomatal opening as the possible source of temperature variation. Genetic variation for the significant markers of the QTL was present only within the tall, low-yielding landraces adapted to drought-prone environments. The absence of variation in the shorter genotypes, which showed lower leaf temperature and higher grain yield, suggests that breeding for high grain yield in rice under paddy conditions has reduced genetic variation for stomatal response under drought

    Gramene database in 2010: updates and extensions

    Get PDF
    Now in its 10th year, the Gramene database (http://www.gramene.org) has grown from its primary focus on rice, the first fully-sequenced grass genome, to become a resource for major model and crop plants including Arabidopsis, Brachypodium, maize, sorghum, poplar and grape in addition to several species of rice. Gramene began with the addition of an Ensembl genome browser and has expanded in the last decade to become a robust resource for plant genomics hosting a wide array of data sets including quantitative trait loci (QTL), metabolic pathways, genetic diversity, genes, proteins, germplasm, literature, ontologies and a fully-structured markers and sequences database integrated with genome browsers and maps from various published studies (genetic, physical, bin, etc.). In addition, Gramene now hosts a variety of web services including a Distributed Annotation Server (DAS), BLAST and a public MySQL database. Twice a year, Gramene releases a major build of the database and makes interim releases to correct errors or to make important updates to software and/or data

    Addressing Research Bottlenecks to Crop Productivity

    Get PDF
    Asymmetry of investment in crop research leads to knowledge gaps and lost opportunities to accelerate genetic gain through identifying new sources and combinations of traits and alleles. On the basis of consultation with scientists from most major seed companies, we identified several research areas with three common features: (i) relatively underrepresented in the literature; (ii) high probability of boosting productivity in a wide range of crops and environments; and (iii) could be researched in ā€˜precompetitiveā€™ space, leveraging previous knowledge, and thereby improving models that guide crop breeding and management decisions. Areas identified included research into hormones, recombination, respiration, roots, and sourceā€“sink, which, along with new opportunities in phenomics, genomics, and bioinformatics, make it more feasible to explore crop genetic resources and improve breeding strategies.We acknowledge Renee Lafitte (Bill and Melinda Gates Foundation) for helpful feedback on the manuscript and Fatima Escalante for valuable assistance in coordinating edits to the manuscript and its formatting. M.R. acknowledges the International Wheat Yield Partnership (https://iwyp.org/) for establishing a precedent of integrating different research strands in wheat for targeted prebreeding and the Foundation for Food and Agricultural Research (https://foundationfar.org/) for supporting a translational research and prebreeding pipeline at CIMMYT to identify and stack climate resilience traits in wheat
    • ā€¦
    corecore